Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying answers to questions using neural networks. One of the methods includes receiving an input text passage and an input question string; processing the input text passage using an encoder neural network to generate a respective encoded representation for each passage token in the input text passage; at each time step: processing a decoder input using a decoder neural network to update the internal state of the decoder neural network; and processing the respective encoded representations and a preceding output of the decoder neural network using a matching vector neural network to generate a matching vector for the time step; and generating an answer score that indicates how well the input text passage answers a question posed by the input question string.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating answers to answer-seeking queries. One of the methods includes receiving a query having multiple terms. The query is classified as an answer-seeking query of a particular question type, and one or more answer types associated with the particular question type are obtained. Search results satisfying the query are obtained, and a respective score is computed for each of one or more passages of text occurring in each document identified by the search results, wherein the score for each passage of text is based on how many of the one or more answer types match the passage of text. A presentation that includes information from one or more of the passages of text selected based on the respective score is provided in response to the query.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying answers to questions using neural networks. One of the methods includes receiving an input text passage and an input question string; processing the input text passage using an encoder neural network to generate a respective encoded representation for each passage token in the input text passage; at each time step: processing a decoder input using a decoder neural network to update the internal state of the decoder neural network; and processing the respective encoded representations and a preceding output of the decoder neural network using a matching vector neural network to generate a matching vector for the time step; and generating an answer score that indicates how well the input text passage answers a question posed by the input question string.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for identifying implicit question queries. In one aspect, a method includes receiving a query in unstructured form, comparing terms of the query to query templates, determining, based on the comparison, a match of the query terms to a first query template, wherein the first query template is not determined to be indicative of a question query, determining, based on the first query template, a second query template, and determining that the query is an implicit question query in response to the second query template being indicative of a question queries.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for identifying implicit question queries. In one aspect, a method includes receiving a query in unstructured form, comparing terms of the query to query templates, determining, based on the comparison, a match of the query terms to a first query template, wherein the first query template is not determined to be indicative of a question query, determining, based on the first query template, a second query template, and determining that the query is an implicit question query in response to the second query template being indicative of a question queries.