Extracting patterns from location history
    1.
    发明授权
    Extracting patterns from location history 有权
    从位置记录中提取模式

    公开(公告)号:US09310211B1

    公开(公告)日:2016-04-12

    申请号:US14474033

    申请日:2014-08-29

    申请人: Google Inc.

    IPC分类号: G01C21/34

    摘要: Embodiments relate to determining commute routes and clustering commute routes from a user's location history. Points in the user's location history may be clustered to find the user's home and work locations. Additionally, points along the user's commute may be identified to determine the user's typical commute. Similar commutes can be clustered together, and used to suggest various services to the user.

    摘要翻译: 实施例涉及从用户的位置历史确定通勤路线和聚集通勤路线。 用户位置记录中的点可能会聚集,以查找用户的家庭和工作地点。 此外,可以识别沿用户通勤的点以确定用户的典型通勤。 类似的通勤可以集中在一起,并用于向用户建议各种服务。

    Training a model using parameter server shards
    2.
    发明授权
    Training a model using parameter server shards 有权
    使用参数服务器分片训练模型

    公开(公告)号:US09218573B1

    公开(公告)日:2015-12-22

    申请号:US13826327

    申请日:2013-03-14

    申请人: Google Inc.

    摘要: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a model using parameter server shards. One of the methods includes receiving, at a parameter server shard configured to maintain values of a disjoint partition of the parameters of the model, a succession of respective requests for parameter values from each of a plurality of replicas of the model; in response to each request, downloading a current value of each requested parameter to the replica from which the request was received; receiving a succession of uploads, each upload including respective delta values for each of the parameters in the partition maintained by the shard; and updating values of the parameters in the partition maintained by the parameter server shard repeatedly based on the uploads of delta values to generate current parameter values.

    摘要翻译: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于使用参数服务器分片训练模型。 其中一种方法包括在被配置为维持模型的参数的不相交分区的值的参数服务器分片上接收来自模型的多个副本中的每一个的参数值的相继请求; 响应于每个请求,将每个请求的参数的当前值下载到从其接收请求的副本; 接收连续的上传,每次上传包括由分片保存的分区中的每个参数的各自的增量值; 并且根据增量值的上载重复地更新由参数服务器分片保存的分区中的参数的值,以生成当前参数值。

    Training a model using parameter server shards
    3.
    发明授权
    Training a model using parameter server shards 有权
    使用参数服务器分片训练模型

    公开(公告)号:US08768870B1

    公开(公告)日:2014-07-01

    申请号:US13968019

    申请日:2013-08-15

    申请人: Google Inc.

    IPC分类号: G06F15/18

    摘要: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a model using parameter server shards. One of the methods includes receiving, at a parameter server shard configured to maintain values of a disjoint partition of the parameters of the model, a succession of respective requests for parameter values from each of a plurality of replicas of the model; in response to each request, downloading a current value of each requested parameter to the replica from which the request was received; receiving a succession of uploads, each upload including respective delta values for each of the parameters in the partition maintained by the shard; and updating values of the parameters in the partition maintained by the parameter server shard repeatedly based on the uploads of delta values to generate current parameter values.

    摘要翻译: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于使用参数服务器分片训练模型。 其中一种方法包括在被配置为维持模型的参数的不相交分区的值的参数服务器分片上接收来自模型的多个副本中的每一个的参数值的相继请求; 响应于每个请求,将每个请求的参数的当前值下载到从其接收请求的副本; 接收连续的上传,每次上传包括由分片保存的分区中的每个参数的各自的增量值; 并且根据增量值的上载重复地更新由参数服务器分片保存的分区中的参数的值,以生成当前参数值。

    Multilingual, acoustic deep neural networks
    6.
    发明授权
    Multilingual, acoustic deep neural networks 有权
    多语言,声学深层神经网络

    公开(公告)号:US09460711B1

    公开(公告)日:2016-10-04

    申请号:US13862541

    申请日:2013-04-15

    申请人: Google Inc.

    摘要: Methods and systems for processing multilingual DNN acoustic models are described. An example method may include receiving training data that includes a respective training data set for each of two or more or languages. A multilingual deep neural network (DNN) acoustic model may be processed based on the training data. The multilingual DNN acoustic model may include a feedforward neural network having multiple layers of one or more nodes. Each node of a given layer may connect with a respective weight to each node of a subsequent layer, and the multiple layers of one or more nodes may include one or more shared hidden layers of nodes and a language-specific output layer of nodes corresponding to each of the two or more languages. Additionally, weights associated with the multiple layers of one or more nodes of the processed multilingual DNN acoustic model may be stored in a database.

    摘要翻译: 描述了处理多语言DNN声学模型的方法和系统。 示例性方法可以包括接收包括用于两种或多种或多种语言中的每一种的相应训练数据集的训练数据。 可以基于训练数据处理多语言深层神经网络(DNN)声学模型。 多语言DNN声学模型可以包括具有一个或多个节点的多个层的前馈神经网络。 给定层的每个节点可以将相应权重连接到后续层的每个节点,并且一个或多个节点的多个层可以包括节点的一个或多个共享隐藏层和对应于节点的语言特定输出层 每种两种或多种语言。 另外,与经处理的多语言DNN声学模型的一个或多个节点的多个层相关联的权重可以存储在数据库中。