Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating representations of input sequences. One of the methods includes receiving a grapheme sequence, the grapheme sequence comprising a plurality of graphemes arranged according to an input order; processing the sequence of graphemes using a long short-term memory (LSTM) neural network to generate an initial phoneme sequence from the grapheme sequence, the initial phoneme sequence comprising a plurality of phonemes arranged according to an output order; and generating a phoneme representation of the grapheme sequence from the initial phoneme sequence generated by the LSTM neural network, wherein generating the phoneme representation comprises removing, from the initial phoneme sequence, phonemes in one or more positions in the output order.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for verifying pronunciations. In one aspect, a method includes obtaining a first transcription for an utterance. A second transcription for the utterance is obtained. The second transcription is different from the first transcription. One or more feature scores are determined based on the first transcription and the second transcription. The one or more feature scores are input to a trained classifier. An output of the classifier is received. The output indicates which of the first transcription and the second transcription is more likely to be a correct transcription of the utterance.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for acoustic modeling of audio data. One method includes receiving audio data representing a portion of an utterance, providing the audio data to a trained recurrent neural network that has been trained to indicate the occurrence of a phone at any of multiple time frames within a maximum delay of receiving audio data corresponding to the phone, receiving, within the predetermined maximum delay of providing the audio data to the trained recurrent neural network, output of the trained neural network indicating a phone corresponding to the provided audio data using output of the trained neural network to determine a transcription for the utterance, and providing the transcription for the utterance.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for training a hierarchical recurrent neural network (HRNN) having a plurality of parameters on a plurality of training acoustic sequences to generate phoneme representations of received acoustic sequences. One method includes, for each of the received training acoustic sequences: processing the received acoustic sequence in accordance with current values of the parameters of the HRNN to generate a predicted grapheme representation of the received acoustic sequence; processing an intermediate output generated by an intermediate layer of the HRNN during the processing of the received acoustic sequence to generate one or more predicted phoneme representations of the received acoustic sequence; and adjusting the current values of the parameters of the HRNN based at (i) the predicted grapheme representation and (ii) the one or more predicted phoneme representations.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating word pronunciations. One of the methods includes determining, by one or more computers, spelling data that indicates the spelling of a word, providing the spelling data as input to a trained recurrent neural network, the trained recurrent neural network being trained to indicate characteristics of word pronunciations based at least on data indicating the spelling of words, receiving output indicating a stress pattern for pronunciation of the word generated by the trained recurrent neural network in response to providing the spelling data as input, using the output of the trained recurrent neural network to generate pronunciation data indicating the stress pattern for a pronunciation of the word, and providing, by the one or more computers, the pronunciation data to a text-to-speech system or an automatic speech recognition system.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for verifying pronunciations. In one aspect, a method includes obtaining a first transcription for an utterance. A second transcription for the utterance is obtained. The second transcription is different from the first transcription. One or more feature scores are determined based on the first transcription and the second transcription. The one or more feature scores are input to a trained classifier. An output of the classifier is received. The output indicates which of the first transcription and the second transcription is more likely to be a correct transcription of the utterance.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating acoustic models. In some implementations, a first neural network trained as an acoustic model using the connectionist temporal classification algorithm is obtained. Output distributions from the first neural network are obtained for an utterance. A second neural network is trained as an acoustic model using the output distributions produced by the first neural network as output targets for the second neural network. An automated speech recognizer configured to use the trained second neural network is provided.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating acoustic models. In some implementations, a first neural network trained as an acoustic model using the connectionist temporal classification algorithm is obtained. Output distributions from the first neural network are obtained for an utterance. A second neural network is trained as an acoustic model using the output distributions produced by the first neural network as output targets for the second neural network. An automated speech recognizer configured to use the trained second neural network is provided.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for learning pronunciations from acoustic sequences. One method includes receiving an acoustic sequence, the acoustic sequence comprising a respective acoustic feature representation at each of a plurality of time steps; for each of the time steps processing the acoustic feature representation through each of one or more recurrent neural network layers to generate a recurrent output; processing the recurrent output for the time step using a phoneme output layer to generate a phoneme representation for the acoustic feature representation for the time step; and processing the recurrent output for the time step using a grapheme output layer to generate a grapheme representation for the acoustic feature representation for the time step; and extracting, from the phoneme and grapheme representations for the acoustic feature representations at each time step, a respective pronunciation for each of one or more words.