Abstract:
An input signal that includes linguistic content in a first language may be received by a computing device. The linguistic content may include text or speech. The computing device may associate the linguistic content in the first language with one or more phonemes from a second language. The computing device may also determine a phonemic representation of the linguistic content in the first language based on use of the one or more phonemes from the second language. The phonemic representation may be indicative of a pronunciation of the linguistic content in the first language according to speech sounds of the second language.
Abstract:
An input signal that includes linguistic content in a first language may be received by a computing device. The linguistic content may include text or speech. Based on an acoustic feature comparison between a plurality of first-language speech sounds and a plurality of second-language speech sounds, the computing device may associate the linguistic content in the first language with one or more phonemes from a second language. The computing device may also determine a phonemic representation of the linguistic content in the first language based on use of the one or more phonemes from the second language. The phonemic representation may be indicative of a pronunciation of the linguistic content in the first language according to speech sounds of the second language.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for providing a representation based on structured data in resources. The methods, systems, and apparatus include actions of receiving target acoustic features output from a neural network that has been trained to predict acoustic features given linguistic features. Additional actions include determining a distance between the target acoustic features and acoustic features of a stored acoustic sample. Further actions include selecting the acoustic sample to be used in speech synthesis based at least on the determined distance and synthesizing speech based on the selected acoustic sample.
Abstract:
Methods and systems for sharing of adapted voice profiles are provided. The method may comprise receiving, at a computing system, one or more speech samples, and the one or more speech samples may include a plurality of spoken utterances. The method may further comprise determining, at the computing system, a voice profile associated with a speaker of the plurality of spoken utterances, and including an adapted voice of the speaker. Still further, the method may comprise receiving, at the computing system, an authorization profile associated with the determined voice profile, and the authorization profile may include one or more user identifiers associated with one or more respective users. Yet still further, the method may comprise the computing system providing the voice profile to at least one computing device associated with the one or more respective users, based at least in part on the authorization profile.
Abstract:
In some implementations, a text-to-speech system may perform a mapping of acoustic frames to linguistic model clusters in a pre-selection process for unit selection synthesis. An architecture may leverage data-driven models, such as neural networks that are trained using recorded speech samples, to effectively map acoustic frames to linguistic model clusters during synthesis. This architecture may allow for improved handling and synthesis of combinations of unseen linguistic features.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing statistical unit selection language modeling based on acoustic fingerprinting. The methods, systems and apparatus include the actions of obtaining a unit database of acoustic units and, for each acoustic unit, linguistic data corresponding to the acoustic unit; obtaining stored data associating each acoustic unit with (i) a corresponding acoustic fingerprint and (ii) a probability of the linguistic data corresponding to the acoustic unit occurring in a text corpus; determining that the unit database of acoustic units has been updated to include one or more new acoustic units; for each new acoustic unit in the updated unit database: generating an acoustic fingerprint for the new acoustic unit; identifying an acoustic unit that (i) has an acoustic fingerprint that is indicated as similar to the fingerprint of the new acoustic unit, and (ii) has a stored associated probability.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing statistical unit selection language modeling based on acoustic fingerprinting. The methods, systems and apparatus include the actions of obtaining a unit database of acoustic units and, for each acoustic unit, linguistic data corresponding to the acoustic unit; obtaining stored data associating each acoustic unit with (i) a corresponding acoustic fingerprint and (ii) a probability of the linguistic data corresponding to the acoustic unit occurring in a text corpus; determining that the unit database of acoustic units has been updated to include one or more new acoustic units; for each new acoustic unit in the updated unit database: generating an acoustic fingerprint for the new acoustic unit; identifying an acoustic unit that (i) has an acoustic fingerprint that is indicated as similar to the fingerprint of the new acoustic unit, and (ii) has a stored associated probability.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.