Abstract:
A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
Abstract:
A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
Abstract:
A communication system includes a first multiplexer configured to multiplex a first optical line terminal signal having a first multiplexing group and a second optical line terminal signal having a second multiplexing group into a first multiplexed signal. The communication system includes a second multiplexer configured to demultiplex a second multiplexed signal into a third optical line terminal signal having the first multiplexing group and a fourth optical line terminal signal having the second multiplexing group. Moreover, the communication system includes a third multiplexer optically connected with the first multiplexer and the second multiplexer, the third multiplexer configured to multiplex/demultiplex between a feeder optical signal and the first and second multiplexed signals. The first and second optical line terminal signals include a legacy upstream free spectral range, and the third and fourth optical line terminal signals include a legacy downstream free spectral range.
Abstract:
Aspects of this disclosure relate to a cable that includes an outer housing, a plurality of optical fibers within the outer housing and arranged side-by-side along the width of the cable; and a removably attached access layer within the outer housing.
Abstract:
An optical network remote node includes first and second node inputs, each receiving a multiplexed optical signal, and node outputs, each outputting a separate demultiplexed optical signal. The node includes first and second optical power splitters, each having a splitter input connected to one of the node inputs and splitter outputs connected to corresponding node outputs. The node includes an arrayed waveguide grating having first and second grating inputs connected to the first and second node inputs, respectively, and grating outputs connected to the corresponding node outputs. If the received signal at one of the node inputs is time division multiplexed, the corresponding connected optical power splitter broadcasts the received optical signal at the node outputs. If the received signal at one of the node inputs is wavelength division multiplexed, the arrayed waveguide grating demultiplexes the received optical signals in wavelength and outputs the demultiplexed signals at the node outputs.
Abstract:
A system includes an optical transceiver configured to transmit/receive at least one optical feed and a beam separator configured to separate the optical feed into a plurality of optical beams, and spatially combine the optical beams into the optical beam. The system also includes a dichroic mirror optically coupled to the beam separator and configured to reflect the optical beams, and allow beacon signals to pass therethrough. A position sensitive detector of the system optically couples to the dichroic mirror and is configured to sense an incidence position of each beacon signal allowed to pass through the dichroic mirror, and output a position error for each optical beam based on the sensed incidence positions. The system also includes a multi-axis optical steering system configured to direct each optical beam based on the corresponding position error outputted from the position sensitive detector and a corresponding transmit/receive target.
Abstract:
Aspects of this disclosure relate to a cable that includes an outer housing, a plurality of optical fibers within the outer housing and arranged side-by-side along the width of the cable; and a removably attached access layer within the outer housing.
Abstract:
The present disclosure relates to a clamp sleeve for a bundled fiber cable. The clamp sleeve includes a first actuating arm, a second actuating arm, and a hinge connecting the first actuating arm and the second actuating arm. The first actuating arm includes a first protuberance, a second protuberance, and a third protuberance, such that a slot forms between each protuberance. The second actuating arm a fourth protuberance, a fifth protuberance, and a sixth protuberance with a slot formed between the fourth, fifth, and sixth protuberances.
Abstract:
Technology for securing a line, such as a fiber optic line, to a structure, such as a utility pole. In one aspect, a clamp is provided. The clamp includes a body, a first nub located at a first position on the body, and a first receptacle located at a second position on the body, wherein the first receptacle is connectable with a second nub that is secured to a pole-mount, and the first nub is connectable with a second receptacle that is secured to an aerial drone.
Abstract:
The present disclosure relates to a clamp sleeve for a bundled fiber cable. The clamp sleeve includes a first actuating arm, a second actuating arm, and a hinge connecting the first actuating arm and the second actuating arm. The first actuating arm includes a first protuberance, a second protuberance, and a third protuberance, such that a slot forms between each protuberance. The second actuating arm a fourth protuberance, a fifth protuberance, and a sixth protuberance with a slot formed between the fourth, fifth, and sixth protuberances.