摘要:
An application for a disposable support/resuscitation system is disclosed includes a pressurized gas inlet and a pressure relief device interfaced to the pressurized gas inlet. The pressure relief device has a first pressure relief valve that opens at a setable gas pressure and, optionally, has a second pressure relief valve that opens at a pre-determined maximum gas pressure. A manometer is interfaced to the pressure relief valve, a manually operated valve is interfaced to the manometer, and a patient interface port is interfaced with the manually operated valve. The manually operated valve selectively controls administration of the pressurized gas to the patient and both the manometer and the manually operated valve are in close proximity to the patient.
摘要:
An application for a PEEP valve includes a filter media in the air flow between a patient interface and exit vent(s). The patient interface is connected to a patient airway system and the exit vents exhaust exhalation gasses into the atmosphere. The filter prevents or reduces the passage of microbes from the patient's exhalation gasses into the atmosphere. The PEEP valve provides positive gas pressure to a patient's lungs, requiring a predetermined exhalation gas pressure to be exceeded before releasing exhalation gasses into the atmosphere.
摘要:
An application for a PEEP valve includes a filter media in the air flow between a patient interface and exit vent(s). The patient interface is connected to a patient airway system and the exit vents exhaust exhalation gasses into the atmosphere. The filter prevents or reduces the passage of microbes from the patient's exhalation gasses into the atmosphere. The PEEP valve provides positive gas pressure to a patient's lungs, requiring a predetermined exhalation gas pressure to be exceeded before releasing exhalation gasses into the atmosphere.
摘要:
A breathing assistance device with improved pressure characteristics is disclosed. The device is capable of providing a high level of CPAP per unit of supplementary respirable gas consumed while maintaining low CPAP fluctuations throughout the breath cycle. The invention further optionally comprises a manometer for monitoring pressure and a safety pressure relief valve as additional safety measures against overpressure delivered to a patient. The device may be made to be completely disposable for one-time or single patient use.
摘要:
The CO2 detector has a disc attached to a rim which in turn is attached to a third port on a esophageal detector housing. A baffle rises from an interior surface of the housing to slightly below an opening to the third port. A first and second port of the housing on each side of the third port are in axial alignment. The first port is attached to an elastomeric bulb and the second port is adapted to be connected to an adapter which in turn is attached to an intubation tube. A colorimetric indicator paper is shown through a clear plastic cover after removing backing on the indicator paper through the second port.
摘要:
A neonatal colorimetric carbon dioxide detector has a colorimetric carbon dioxide detector membrane having a pH-sensitive chemical indicator that undergoes colorimetric change in the presence of carbon dioxide. The detector has a patient orifice in fluid communication with the baby's airway and a respiration equipment orifice connected to a breathing system. The patient orifice is connected to a breathing tube and when the breathing tube is inserted correctly into the trachea, as the baby exhales, carbon dioxide interacts with the colorimetric membrane which changes color based upon the concentration of carbon dioxide. The internal volume of the neonatal colorimetric carbon dioxide detector is reduced to properly function with low-birth-weight (neonatal) infants.
摘要:
An application for a neonatal calorimetric carbon dioxide detector has a calorimetric carbon dioxide detector membrane having a pH-sensitive chemical indicator that undergoes calorimetric change in the presence of carbon dioxide. The detector has a patient orifice in fluid communication with the baby's airway and a respiration equipment orifice connected to a breathing system. The patient orifice is connected to a breathing tube and when the breathing tube is inserted correctly into the trachea, as the baby exhales, carbon dioxide interacts with the calorimetric membrane which changes color based upon the concentration of carbon dioxide. The neonatal calorimetric carbon dioxide detector adds a volume of less than or equal to 1 mL after being attached to a breathing circuit.
摘要:
A disposable manometer includes a chamber connectable to a source of respiratory gases via a patient breathing valve and a passageway. A pointer is rotatably disposed with respect to a dial to indicate pressure within the chamber. The pointer has an actuator stem with a spiral-shaped protrusion coupled to a groove within an opening of a stem coupling attached at the center of a diaphragm forming one wall of the chamber. Responsive to pressure entering the chamber, the diaphragm reciprocates against the force of a biasing non-magnetic resilient member moving the stem coupling with respect to the actuator stem of the pointer so that the interaction between the spiral-shaped protrusion and the groove causes rotation of the pointer to indicate the pressure within the chamber. The disposable manometer is useful with any source of respiratory gasses and in the vicinity of any strong magnetic field.
摘要:
A neonatal colorimetric carbon dioxide detector has a colorimetric carbon dioxide detector membrane having a pH-sensitive chemical indicator that undergoes colorimetric change in the presence of carbon dioxide. The detector has a patient orifice in fluid communication with the baby's airway and a respiration equipment orifice connected to a breathing system. The patient orifice is connected to a breathing tube and when the breathing tube is inserted correctly into the trachea, as the baby exhales, carbon dioxide interacts with the colorimetric membrane which changes color based upon the concentration of carbon dioxide. The internal volume of the neonatal colorimetric carbon dioxide detector is reduced to properly function with low-birth-weight (neonatal) infants.