Seismic data analysis
    1.
    发明授权
    Seismic data analysis 有权
    地震资料分析

    公开(公告)号:US09297918B2

    公开(公告)日:2016-03-29

    申请号:US13729769

    申请日:2012-12-28

    CPC classification number: G06N99/005 G01V1/301 G01V99/00 G01V2210/64

    Abstract: An approach for seismic data analysis is provided. In accordance with various embodiments, the active learning approaches are employed in conjunction with an analysis algorithm that is used to process the seismic data. Algorithms that may employ such active learning include, but are not limited to, ranking algorithms and classification algorithms.

    Abstract translation: 提供了一种地震数据分析方法。 根据各种实施例,主动学习方法与用于处理地震数据的分析算法结合使用。 可以采用这种主动学习的算法包括但不限于排序算法和分类算法。

    SEISMIC DATA ANALYSIS
    2.
    发明申请
    SEISMIC DATA ANALYSIS 有权
    地震数据分析

    公开(公告)号:US20140188769A1

    公开(公告)日:2014-07-03

    申请号:US13729769

    申请日:2012-12-28

    CPC classification number: G06N99/005 G01V1/301 G01V99/00 G01V2210/64

    Abstract: An approach for seismic data analysis is provided. In accordance with various embodiments, the active learning approaches are employed in conjunction with an analysis algorithm that is used to process the seismic data. Algorithms that may employ such active learning include, but are not limited to, ranking algorithms and classification algorithms.

    Abstract translation: 提供了一种地震数据分析方法。 根据各种实施例,主动学习方法与用于处理地震数据的分析算法结合使用。 可以采用这种主动学习的算法包括但不限于排序算法和分类算法。

    IMAGE CONGEALING VIA EFFICIENT FEATURE SELECTION
    4.
    发明申请
    IMAGE CONGEALING VIA EFFICIENT FEATURE SELECTION 有权
    通过有效的特征选择形成图像

    公开(公告)号:US20150324663A1

    公开(公告)日:2015-11-12

    申请号:US14798160

    申请日:2015-07-13

    Abstract: A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.

    Abstract translation: 公开了一种用于无监督特征选择的新技术。 所公开的方法包括自动选择图像的特征的子集。 另外,可以使用诸如基于最小二乘法的凝结算法的凝结算法来结合特征子集的选择。 通过选择图像的特征表示的子集,可以减少或去除冗余和/或不相关的特征,并且可以提高基于最小二乘法的凝结的效率和精度。

    Image congealing via efficient feature selection
    5.
    发明授权
    Image congealing via efficient feature selection 有权
    图像凝结通过有效的特征选择

    公开(公告)号:US09082043B2

    公开(公告)日:2015-07-14

    申请号:US14323813

    申请日:2014-07-03

    Abstract: A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.

    Abstract translation: 公开了一种用于无监督特征选择的新技术。 所公开的方法包括自动选择图像的特征的子集。 另外,可以使用诸如基于最小二乘法的凝结算法的凝结算法来结合特征子集的选择。 通过选择图像的特征表示的子集,可以减少或去除冗余和/或不相关的特征,并且可以提高基于最小二乘法的凝结的效率和精度。

    IMAGE CONCEALING VIA EFFICIENT FEATURE SELECTION
    6.
    发明申请
    IMAGE CONCEALING VIA EFFICIENT FEATURE SELECTION 有权
    通过有效的特征选择进行图像感知

    公开(公告)号:US20140321758A1

    公开(公告)日:2014-10-30

    申请号:US14323813

    申请日:2014-07-03

    Abstract: A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.

    Abstract translation: 公开了一种用于无监督特征选择的新技术。 所公开的方法包括自动选择图像的特征的子集。 另外,可以使用诸如基于最小二乘法的凝结算法的凝结算法来结合特征子集的选择。 通过选择图像的特征表示的子集,可以减少或去除冗余和/或不相关的特征,并且可以提高基于最小二乘法的凝结的效率和精度。

Patent Agency Ranking