Abstract:
A method includes obtaining particles of a phosphor precursor of formula Ax[MFy]:Mn4+, reducing sizes of the particles of the phosphor precursor by wet milling the particles and annealing the particles that are wet milled by contacting the particles with a fluorine-containing oxidizing agent. Additionally, a manganese doped complex fluoride phosphor prepared by this method is provided. A lighting apparatus and backlight device that include manganese-doped phosphor prepared by this method also are provided.
Abstract:
Coating systems suitable for use in fluorescent lamps, particularly as scattering agents within a UV-reflecting coating for the purpose of improving fluorescent lamp luminosity. Such a coating system is provided on a transparent or translucent substrate and includes a phosphor coating and a scattering agent that scatters UV rays. The scattering agent includes an inorganic powder present in a separate UV-reflecting layer adjacent the phosphor coating and/or dispersed in the phosphor coating so that the scattered UV rays are absorbed by the phosphor coating and cause the phosphor coating to emit visible light. The inorganic powder exhibits low or no absorption to UV rays having wavelengths of 185 nm and 254 nm and is not reactive with mercury.
Abstract:
A potassium hexafluoromanganate (K2MnF6) composition includes no more than six parts per million of each of one or more Group 13 elements, no more than 520 parts per million of one or more alkaline earth metals, no more than fourteen parts per million of one or more transition metals, and/or no more than forty parts per million of calcium. A method for providing this composition, as well as lighting apparatuses, backlight units, and electronic devices including phosphors formed from the composition also are provided.
Abstract:
Phosphor-containing coating compositions and methods capable of changing the lumen maintenance characteristics of phosphor-containing coatings and fluorescent lamps that utilize such coatings. Lumen maintenance of a fluorescent lamp can be modified by forming a phosphor-containing coating to contain at least a first phosphor that depreciates during operation of the fluorescent lamp, and forming the phosphor-containing coating to further contain an additive composition in a sufficient amount and sufficiently uniformly distributed in the phosphor-containing coating to inhibit depreciation of the first phosphor during operation of the fluorescent lamp.
Abstract:
A method for making coated zinc silicate phosphor, the method includes the steps of combining a zinc silicate with a rare earth compound under aqueous conditions and removing the water from a product of the combination to form a powder. The powder is fired to form a coated zinc silicate phosphor.
Abstract:
Coating systems suitable for use in generating fluorescent visible light, and lamps provided with such coating systems. The coating systems includes a phosphor-containing coating that contains at least a first phosphor that is predominantly excited by ultraviolet radiation of a first wavelength to emit visible light and absorbs but is less efficiently excited by ultraviolet radiation of a second wavelength. The coating system further includes a second phosphor that absorbs the ultraviolet radiation of the second wavelength and little if any of the ultraviolet radiation of the first wavelength.
Abstract:
Phosphor particles, methods for their use to produce fluorescent lamps, and fluorescent lamps that make use of such particles. Such a phosphor particle has a core surrounded by a shell, and the shell contains GdMgB5O10 doped (activated) with at least terbium ions as a rare earth-containing phosphor composition that absorbs ultraviolet photons to emit green-spectrum light. The core is formed of a mineral material that is chemically compatible with the rare earth-containing phosphor composition of the shell, but does not contain intentional additions of terbium.