Abstract:
A direct current power system includes a common direct current (DC) bus configured to supply power to a plurality of loads. A plurality of alternating current (AC) to DC converter bridges supply DC power to the common CD bus. Each of the AC to DC converter bridges is connected to the common DC bus by at least one split DC link. The at least one split DC link includes a small capacitor connected across output terminals of the respective AC to DC converter bridge and at least one diode coupled between two terminals of the small capacitor and the large capacitor in a way to block an instantaneous current flow from the common DC bus to the respective AC to DC converter bridge in case of a fault of the AC to DC converter bridge.
Abstract:
An electrical system includes an AC power source and a power converter including at least one first terminal and at least one second terminal. The first terminal is configured to receive voltages with a DC component and the second terminal is configured to receive voltages that have a non-zero time average value including AC and DC components. The electrical system also includes an AC power transmission subsystem coupled to and extending between the AC power source and the power converter. The electrical system further includes a current diversion system including a plurality of first switching devices coupled to the AC power transmission subsystem. The current diversion system also includes a second switching device including a third terminal coupled to the first terminal and a fourth terminal coupled to the second terminal. The second switching device is configured to transmit current only from the third terminal to the fourth terminal.
Abstract:
A DC power transmission system is configured to generate an electric field including components substantially constant with respect to time and varying with time. The DC power transmission system includes an AC stage configured to receive AC electrical power. The AC stage includes a transformer including primary windings and secondary windings configured to be electromagnetically coupled to, and electrically isolated from, each other. The AC stage also includes an AC/AC converter having substantially no insulating features against the at least one substantially constant component of the electric field. The AC/AC converter is electrically coupled to the primary windings. The DC power transmission system also includes an AC/DC conversion stage positioned downstream of the AC stage. The AC/DC conversion stage includes an AC/DC rectifier configured to convert AC electrical power to DC electrical power without external control. The AC/DC rectifier is coupled to the secondary windings.
Abstract translation:直流电力传输系统被配置为产生包括相对于时间基本上恒定且随时间变化的分量的电场。 直流电力传输系统包括被配置为接收AC电力的AC级。 AC级包括变压器,其包括初级绕组和次级绕组,其被配置为电磁耦合到彼此并且彼此电隔离。 AC级还包括AC / AC转换器,其基本上没有与电场的至少一个基本恒定的分量相对的绝缘特性。 AC / AC转换器电耦合到初级绕组。 直流电力传输系统还包括位于AC级下游的AC / DC转换级。 AC / DC转换级包括AC / DC整流器,被配置为在没有外部控制的情况下将AC电力转换为DC电力。 AC / DC整流器耦合到次级绕组。
Abstract:
A direct current power system includes a common direct current (DC) bus configured to supply power to a plurality of loads. A plurality of alternating current (AC) to DC converter bridges supply DC power to the common CD bus. Each of the AC to DC converter bridges is connected to the common DC bus by at least one split DC link. The at least one split DC link includes a small capacitor connected across output terminals of the respective AC to DC converter bridge and at least one diode coupled between two terminals of the small capacitor and the large capacitor in a way to block an instantaneous current flow from the common DC bus to the respective AC to DC converter bridge in case of a fault of the AC to DC converter bridge.
Abstract:
A direct current electrical machine, which includes a rotor that generates a rotor magnetic field, a first commutation cell that includes a winding component, a first switching device, and a second switching device. The first winding component includes a first portion electrically coupled between a first terminal and a second terminal of the first winding component and a second portion electrically coupled between a third terminal and the second terminal of the first winding component. The first switching device is electrically coupled to the first terminal and is closed when a first voltage induced across the first portion by rotation of the rotor magnetic field is positive; and the second switching device is electrically coupled to the third terminal and is closed when a second voltage induced across the second portion by the rotation of the rotor magnetic field is negative.
Abstract:
A power electronic device includes at least one inductor configured to couple to a first capacitor and a second capacitor. The power electronic device includes a controller configured to control a first current conducting through the inductor and a second current conducting through the inductor. The first and second currents conduct in opposite directions with respect to each other, and the first and second currents interact with each other through the inductor such that a net direct current (DC) component through the inductor is approximately zero.
Abstract:
An electrical system includes an AC power source and a power converter including at least one first terminal and at least one second terminal. The first terminal is configured to receive voltages with a DC component and the second terminal is configured to receive voltages that have a non-zero time average value including AC and DC components. The electrical system also includes an AC power transmission subsystem coupled to and extending between the AC power source and the power converter. The electrical system further includes a current diversion system including a plurality of first switching devices coupled to the AC power transmission subsystem. The current diversion system also includes a second switching device including a third terminal coupled to the first terminal and a fourth terminal coupled to the second terminal. The second switching device is configured to transmit current only from the third terminal to the fourth terminal.
Abstract:
A DC power transmission system is configured to generate an electric field including components substantially constant with respect to time and varying with time. The DC power transmission system includes an AC stage configured to receive AC electrical power. The AC stage includes a transformer including primary windings and secondary windings configured to be electromagnetically coupled to, and electrically isolated from, each other. The AC stage also includes an AC/AC converter having substantially no insulating features against the at least one substantially constant component of the electric field. The AC/AC converter is electrically coupled to the primary windings. The DC power transmission system also includes an AC/DC conversion stage positioned downstream of the AC stage. The AC/DC conversion stage includes an AC/DC rectifier configured to convert AC electrical power to DC electrical power without external control. The AC/DC rectifier is coupled to the secondary windings.
Abstract translation:直流电力传输系统被配置为产生包括相对于时间基本上恒定且随时间变化的分量的电场。 直流电力传输系统包括被配置为接收AC电力的AC级。 AC级包括变压器,其包括初级绕组和次级绕组,其被配置为电磁耦合到彼此并且彼此电隔离。 AC级还包括AC / AC转换器,其基本上没有与电场的至少一个基本恒定的分量相对的绝缘特性。 AC / AC转换器电耦合到初级绕组。 直流电力传输系统还包括位于AC级下游的AC / DC转换级。 AC / DC转换级包括AC / DC整流器,被配置为在没有外部控制的情况下将AC电力转换为DC电力。 AC / DC整流器耦合到次级绕组。
Abstract:
A power electronic device includes at least one inductor configured to couple to a first capacitor and a second capacitor. The power electronic device includes a controller configured to control a first current conducting through the inductor and a second current conducting through the inductor. The first and second currents conduct in opposite directions with respect to each other, and the first and second currents interact with each other through the inductor such that a net direct current (DC) component through the inductor is approximately zero.
Abstract:
A direct current (DC) power system includes a plurality of energy sources supplying power to a plurality of loads via a DC bus having at least one positive rail. The DC bus includes two DC bus subsections and a DC bus separator coupled between the two DC bus subsections. The DC bus separator includes a controllable switch with at least one of its terminals coupled with a terminal of an inductor to provide a current path between the two DC bus subsections during normal operation via the inductor. The controllable switch is switched off to break the current path when a fault on the positive rail is detected. Furthermore, the DC bus separator includes a diode connected in parallel to the inductor and arranged to provide a circulating current path to dissipate an inductor current in the inductor when the controllable switch is switched off.