摘要:
An electrothermal energy storage and discharge system is provided including a charging cycle and a discharging cycle. The charging cycle includes a refrigeration unit and a thermal unit, and the discharging cycle includes a power unit. The refrigeration unit is driven by an excess electric power and is configured to generate a cold energy storage having a solid carbon dioxide. The thermal unit is driven by a thermal energy and is configured to generate a hot energy storage and/or provide a hot source. The power unit operates between the cold energy storage and at least one of the hot energy storage and hot source so as to retrieve the energy by producing a high pressure carbon dioxide and a hot supercritical carbon dioxide, and generating an electric energy using the hot supercritical carbon dioxide.
摘要:
A rotor assembly is provided. The rotor assembly includes a rotor shaft and at least one blisk integrally formed with the rotor shaft. The at least one blisk includes an inner rim extending circumferentially about the rotor shaft, and a plurality of blades extending radially outward from the inner rim, wherein the rotor shaft and the at least one blisk are defined from a single billet of material.
摘要:
A turbine blisk is provided. The turbine blisk includes an inner rim, a plurality of adjacent rotor blades extending radially outward from said inner rim, a shroud segment integrally coupled to each of the plurality of adjacent rotor blades, thereby forming a plurality of adjacent shroud segments, and a gap defined between each of the adjacent shroud segments. The gap has a geometry that facilitates interlocking the plurality of adjacent shroud segments when a torsional force is applied to the plurality of adjacent rotor blades.
摘要:
A solar energy receiver includes a plurality of solar receiver elements. Each solar receiver element includes a substantially solid core configured to absorb solar radiation and to store the solar radiation as heat. The core includes a base surface and a plurality of absorption surfaces. The receiver further includes at least one fluid passageway defined within the core adjacent at least one absorption surface of the plurality of absorption surfaces, wherein the at least one fluid passageway is configured to channel a working fluid therethrough for absorbing heat stored in the core.
摘要:
A regenerative closed loop thermodynamic power generation cycle system is presented. The system includes a high-pressure expander to deliver an exhaust stream. A conduit is fluidly coupled to the high-pressure expander, which is configured to split the exhaust stream from the high-pressure expander into a first exhaust stream and a second exhaust stream. The system further includes a first low-pressure expander and a second low-pressure expander. The first low-pressure expander is coupled to a pressurization device through a turbocompressor shaft, and fluidly coupled to receive the first exhaust stream. The second low-pressure expander is coupled to the high-pressure expander and an electrical generator through a turbogenerator shaft, and fluidly coupled to receive the second exhaust stream. A method for operating the regenerative closed loop thermodynamic power generation cycle system is also presented.
摘要:
A power plant may include a magnetohydrodynamic (MHD) generator having an MHD exhaust that is cooled using a compressor exit flow to a temperature at which the MHD exhaust can be fed to at least one stage of a gas turbine. The heated compressor exit flow may be used to feed a combustor for the MHD generator. In an alternative embodiment, the gas turbine exhaust may be used in a heat recovery steam generator for a steam turbine system, and then fed back to a compressor for the combustor to the MHD generator. In another embodiment, a power plant may include a compressor exit flow feeding a combustor for an MHD generator and an MHD exhaust may be mixed with a compressor pre-exit, extraction flow for feeding to at least one stage of a gas turbine.
摘要:
A turbine operable with a first fluid and a second fluid is provided. The turbine includes a shaft and having a dry gas seal area, a balance area, and a shaft surface. The turbine also includes a stationary component coupled to a housing and having a first side and a second side and defining a channel in flow communication with the shaft surface. A heat exchange assembly is coupled to the housing and in flow communication with the shaft and the stationary component. The heat exchange assembly includes a first flow path coupled in flow communication with the dry gas seal area and the channel and configured to direct the first fluid along the first side. Heat exchange assembly also includes a second flow path coupled in flow communication with the balance area and channel and configured to direct the second fluid along the second side.
摘要:
A turbine operable with a first fluid and a second fluid is provided. The turbine includes a shaft and having a dry gas seal area, a balance area, and a shaft surface. The turbine also includes a stationary component coupled to a housing and having a first side and a second side and defining a channel in flow communication with the shaft surface. A heat exchange assembly is coupled to the housing and in flow communication with the shaft and the stationary component. The heat exchange assembly includes a first flow path coupled in flow communication with the dry gas seal area and the channel and configured to direct the first fluid along the first side. Heat exchange assembly also includes a second flow path coupled in flow communication with the balance area and channel and configured to direct the second fluid along the second side.
摘要:
A method for operating a closed loop regenerative thermodynamic power generation cycle system is presented. The method includes supplying a high-temperature working fluid stream at a first pressure P1 to an expander, and extracting a partially expanded high temperature working fluid stream from the expander at a second pressure P2. Each of the first pressure P1 and the second pressure P2, are higher than a critical pressure of the working fluid; and the second pressure P2 is lower than P1. The method further includes regeneratively supplying the extracted high temperature working fluid stream at the second pressure P2 to a low temperature working fluid stream at the first pressure P1. A closed loop regenerative thermodynamic power generation cycle system is also presented.
摘要:
A regenerative closed loop thermodynamic power generation cycle system is presented. The system includes a high-pressure expander to deliver an exhaust stream. A conduit is fluidly coupled to the high-pressure expander, which is configured to split the exhaust stream from the high-pressure expander into a first exhaust stream and a second exhaust stream. The system further includes a first low-pressure expander and a second low-pressure expander. The first low-pressure expander is coupled to a pressurization device through a turbocompressor shaft, and fluidly coupled to receive the first exhaust stream. The second low-pressure expander is coupled to the high-pressure expander and an electrical generator through a turbogenerator shaft, and fluidly coupled to receive the second exhaust stream. A method for operating the regenerative closed loop thermodynamic power generation cycle system is also presented.