Abstract:
A rotatory compressor and a refrigerating cycle device are provided. The rotatory compressor includes a lubricating oil in an interior of a hermetically sealed housing, and an electric motor and a rotatory compressing mechanism disposed in the housing. An internal pressure of the housing is substantially equal to a suction pressure of the compressing mechanism. The compressing mechanism includes a first bearing and a second bearing at least one of which includes an exhaust muffler. A refrigerant of the exhaust muffler flows through the sliding vane chamber and is discharged from an exhaust pipe of the compressing mechanism.
Abstract:
A rotary compressor (700) and a refrigeration cycle device (1000) having same are provided. The rotary compressor comprises: a liquid reservoir (1), a first direction control assembly (49), and a compression mechanism. The compression mechanism comprises two cylinders and two gas injection holes, in which a sliding vane of one cylinder is pressed against an outer circumferential wall of a piston in the cylinder and a gas injection hole is used for injecting a refrigerant to the cylinder, while the sliding vane of the other cylinder is optionally in contact with or separate from the piston in the cylinder, the other gas injection hole is used for unidirectionally injecting the refrigerant into the cylinder; a first valve port (491) of the first direction control assembly (49) is connected to the gas suction port of the other cylinder, a second valve port (492) thereof is connected to liquid reservoir (1), a third valve port (493) thereof is in communication with the exhaust hole, and the second valve port (492) and the third port (493) are optionally in communication with the first valve port (491).
Abstract:
A refrigeration cycle device includes at least a condenser, an expansion valve, an evaporator and a plurality of compressors, a sealed casing of each of the compressors is disposed with a rotary compression mechanism part in communication with a low-pressure path and a motor part configured to drive the compression mechanism part, the low-pressure path is in communication with the evaporator, each of the compressors is further provided with an oil storage cavity, and a gas discharge path of at least one compressor is connected with the sealed casing of another compressor.
Abstract:
A refrigerant filling rotary compressor includes a shell, a compressing mechanism, an injection tube and an injection valve assembly. The compressing mechanism includes a cylinder, a main bearing, an auxiliary bearing, a crank shaft, a piston and a sliding vane. An inner wall of the cylinder chamber of the cylinder is formed with a filling mouth, and the cylinder is provided with a filling channel with a filling hole. The injection valve assembly is in a closed state when a pressure inside the cylinder chamber is higher than that in the filling hole so as to separate the filling hole from the filling mouth, and the injection valve assembly is in an open state when the pressure inside the cylinder chamber is lower than that in the filling hole so as to communicate the filling hole with the filling mouth, in which when the injection valve assembly is in the closed state, a space between the injection valve assembly and the filling mouth where a compressed gas exists is termed a clearance volume formed by the injection valve assembly, and a ratio between the clearance volume formed by the injection valve assembly and a reserve volume of the cylinder ranges from 0.3% to 1.5%.
Abstract:
A refrigeration cycle device and a two-stage rotary compressor thereof. The two-stage rotary compressor includes a housing with a gas injection chamber and two cylinders disposed therein; the gas injection chamber connected to a liquid reservoir disposed outside of the housing and a gas injection pipe; a first cylinder in communication with the gas injection chamber; a second cylinder connected to the liquid reservoir, and having a sliding vane groove and a compression chamber with a piston disposed therein in communication with the gas injection chamber; a sliding vane, received in the sliding vane groove when the gas injection chamber is in communication with the liquid reservoir, with an outer end and the sliding vane groove defining a backpressure chamber in communication with the gas injection chamber; and with an inner end abutting against the piston when the gas injection chamber is in communication with the gas injection pipe.
Abstract:
The present disclosure provides a method and a device for controlling a power factor on motor side and a system having the same, and the method includes: controlling the motor using a control approach of Id′=0 so as to obtain quadrature-axis voltage Uq′ and direct-axis voltage Ud′ in a virtual coordinate system of a current control cycle; calculating a first control value according to Uq′ and Ud′; obtaining a power factor control target value, and calculating a target control value according to the power factor control target value; performing a PI control on a difference between the target control value and the first control value so as to obtain a coordinate deviation angle, and overlapping the coordinate deviation angle to a motor angle of the current control cycle so as to build a virtual coordinate system of a next control cycle, such that the power factor on the motor side is controllable.
Abstract:
A method for suppressing a speed fluctuation of a permanent magnet synchronous motor is provided in the present disclosure, including: obtaining a target speed ω_ref, a feedback speed, a fluctuation speed Δω, a q-axis inductance Lq and a permanent magnet flux linkage φf of the permanent magnet synchronous motor; performing a PI adjusting on Δω to obtain a q-axis reference current Iq_ref, and obtaining a q-axis target voltage U*q according to Iq_ref, ω_ref, Δω and φf; performing a PI control on a q-axis actual voltage according to U*q to obtain a q-axis compensation current Iq_add; obtaining a d-axis target voltage U*d according to Iq_ref, Iq_add, ω_ref, Δω and Lq; performing a PI control on a d-axis actual voltage according to U*d to obtain a d-axis compensation current Id_add; superposing Iq_add and Iq_ref to perform a feedforward compensation on a q-axis current and superposing Id_add and the d-axis reference current to perform a feedforward compensation on a d-axis current.