Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
A method for operating an electronic device is provided, in which the device detects contact with a user's finger, scans its fingerprint and sets the orientation of the electronic device based on the fingerprint (e.g., whether is from the user's left hand or right hand) and on an angle of the fingerprint with respect to the device. This allows the electronic device to determine its orientation with respect to the user rather than with respect to the environment.
Abstract:
A method includes receiving sound by a first audio unit installed in an electrical outlet, routing audio data corresponding to the received sound from the first audio unit to a second audio unit installed in a second electrical outlet, and sending the audio data to a mobile device using a wireless link between the mobile device and the second audio unit. Routing the audio data may include receiving the audio data from the first audio unit by a third audio unit and routing the audio data to the second audio unit by the third audio unit serving as a router. The data may be routed using table driven routing, on-demand routing or some other appropriate routing protocol. The method may also include performing voice recognition on the audio data and detecting a command word and routing command word data to the second audio unit.
Abstract:
An electronic device has a combination touch sensor (such as a fingerprint reader) and mechanical switch (actuated, for example, by a button press). The electronic device carries out various functions according to whether the touch sensor is being touched, the mechanical switch is being actuated, the electronic device is face up or face down, the state of the electronic device (awake or in sleep mode), and the function that the electronic device is currently carrying out.
Abstract:
A method for operating an electronic device is provided, in which the device detects contact with a user's finger, scans its fingerprint and sets the orientation of the electronic device based on the fingerprint (e.g., whether is from the user's left hand or right hand) and on an angle of the fingerprint with respect to the device. This allows the electronic device to determine its orientation with respect to the user rather than with respect to the environment.
Abstract:
An assembly (1000) includes a substrate (1002) and a heat emissive electrical component (1001) disposed on the substrate. A shield (1003) is disposed on the substrate, thereby enclosing the heat emissive electrical component. A display assembly (101) is disposed above the shield. A compressible pad (1004) is disposed between the shield and the display assembly. The compressible pad defines an aperture (1005) above the heat emissive electrical component. The aperture can have dimensions that are a function of a shield area and a heat emissive electrical component area.