-
公开(公告)号:US20250029624A1
公开(公告)日:2025-01-23
申请号:US18906761
申请日:2024-10-04
Applicant: Google LLC
Inventor: Arun Narayanan , Tom O'malley , Quan Wang , Alex Park , James Walker , Nathan David Howard , Yanzhang He , Chung-Cheng Chiu
IPC: G10L21/0216 , G06N3/04 , G10L15/06 , G10L21/0208 , H04R3/04
Abstract: A method for automatic speech recognition using joint acoustic echo cancellation, speech enhancement, and voice separation includes receiving, at a contextual frontend processing model, input speech features corresponding to a target utterance. The method also includes receiving, at the contextual frontend processing model, at least one of a reference audio signal, a contextual noise signal including noise prior to the target utterance, or a speaker embedding including voice characteristics of a target speaker that spoke the target utterance. The method further includes processing, using the contextual frontend processing model, the input speech features and the at least one of the reference audio signal, the contextual noise signal, or the speaker embedding vector to generate enhanced speech features.
-
公开(公告)号:US11610586B2
公开(公告)日:2023-03-21
申请号:US17182592
申请日:2021-02-23
Applicant: Google LLC
Inventor: David Qiu , Qiujia Li , Yanzhang He , Yu Zhang , Bo Li , Liangliang Cao , Rohit Prabhavalkar , Deepti Bhatia , Wei Li , Ke Hu , Tara Sainath , Ian Mcgraw
Abstract: A method includes receiving a speech recognition result, and using a confidence estimation module (CEM), for each sub-word unit in a sequence of hypothesized sub-word units for the speech recognition result: obtaining a respective confidence embedding that represents a set of confidence features; generating, using a first attention mechanism, a confidence feature vector; generating, using a second attention mechanism, an acoustic context vector; and generating, as output from an output layer of the CEM, a respective confidence output score for each corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the CEM. For each of the one or more words formed by the sequence of hypothesized sub-word units, the method also includes determining a respective word-level confidence score for the word. The method also includes determining an utterance-level confidence score by aggregating the word-level confidence scores.
-
3.
公开(公告)号:US20220310080A1
公开(公告)日:2022-09-29
申请号:US17643826
申请日:2021-12-11
Applicant: Google LLC
Inventor: David Qiu , Yanzhang He , Yu Zhang , Qiujia Li , Liangliang Cao , Ian McGraw
IPC: G10L15/197 , G10L15/06 , G10L15/22 , G10L15/02 , G10L15/16 , G10L15/30 , G10L15/32 , G10L15/04 , G06N3/08
Abstract: A method including receiving a speech recognition result corresponding to a transcription of an utterance spoken by a user. For each sub-word unit in a sequence of hypothesized sub-word units of the speech recognition result, using a confidence estimation module to: obtain a respective confidence embedding associated with the corresponding output step when the corresponding sub-word unit was output from the first speech recognizer; generate a confidence feature vector; generate an acoustic context vector; and generate a respective confidence output score for the corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the confidence estimation module. The method also includes determining, based on the respective confidence output score generated for each sub-word unit in the sequence of hypothesized sub-word units, an utterance-level confidence score for the transcription of the utterance.
-
公开(公告)号:US20220310072A1
公开(公告)日:2022-09-29
申请号:US17616129
申请日:2020-06-03
Applicant: GOOGLE LLC
Inventor: Tara N. Sainath , Ruoming Pang , David Rybach , Yanzhang He , Rohit Prabhavalkar , Wei Li , Mirkó Visontai , Qiao Liang , Trevor Strohman , Yonghui Wu , Ian C. McGraw , Chung-Cheng Chiu
Abstract: Two-pass automatic speech recognition (ASR) models can be used to perform streaming on-device ASR to generate a text representation of an utterance captured in audio data. Various implementations include a first-pass portion of the ASR model used to generate streaming candidate recognition(s) of an utterance captured in audio data. For example, the first-pass portion can include a recurrent neural network transformer (RNN-T) decoder. Various implementations include a second-pass portion of the ASR model used to revise the streaming candidate recognition(s) of the utterance and generate a text representation of the utterance. For example, the second-pass portion can include a listen attend spell (LAS) decoder. Various implementations include a shared encoder shared between the RNN-T decoder and the LAS decoder.
-
公开(公告)号:US20220199084A1
公开(公告)日:2022-06-23
申请号:US17654195
申请日:2022-03-09
Applicant: Google LLC
Inventor: Wei Li , Rohit Prakash Prabhavalkar , Kanury Kanishka Rao , Yanzhang He , Ian C. McGraw , Anton Bakhtin
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting utterances of a key phrase in an audio signal. One of the methods includes receiving, by a key phrase spotting system, an audio signal encoding one or more utterances; while continuing to receive the audio signal, generating, by the key phrase spotting system, an attention output using an attention mechanism that is configured to compute the attention output based on a series of encodings generated by an encoder comprising one or more neural network layers, generating, by the key phrase spotting system and using attention output, output that indicates whether the audio signal likely encodes the key phrase; and providing, by the key phrase spotting system, the output that indicates whether the audio signal likely encodes the key phrase.
-
公开(公告)号:US20240371363A1
公开(公告)日:2024-11-07
申请号:US18772263
申请日:2024-07-15
Applicant: Google LLC
Inventor: Tara Sainath , Arun Narayanan , Rami Botros , Yanzhang He , Ehsan Variani , Cyril Allauzen , David Rybach , Ruoming Pang , Trevor Strohman
Abstract: An ASR model includes a first encoder configured to receive a sequence of acoustic frames and generate a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames. The ASR model also includes a second encoder configured to receive the first higher order feature representation generated by the first encoder at each of the plurality of output steps and generate a second higher order feature representation for a corresponding first higher order feature frame. The ASR model also includes a decoder configured to receive the second higher order feature representation generated by the second encoder at each of the plurality of output steps and generate a first probability distribution over possible speech recognition hypothesis. The ASR model also includes a language model configured to receive the first probability distribution over possible speech hypothesis and generate a rescored probability distribution.
-
公开(公告)号:US20240363122A1
公开(公告)日:2024-10-31
申请号:US18765108
申请日:2024-07-05
Applicant: GOOGLE LLC
Inventor: Rajeev Rikhye , Quan Wang , Yanzhang He , Qiao Liang , Ian C. McGraw
IPC: G10L17/24 , G10L15/26 , G10L17/06 , G10L21/028
CPC classification number: G10L17/24 , G10L15/26 , G10L17/06 , G10L21/028
Abstract: Techniques disclosed herein are directed towards streaming keyphrase detection which can be customized to detect one or more particular keyphrases, without requiring retraining of any model(s) for those particular keyphrase(s). Many implementations include processing audio data using a speaker separation model to generate separated audio data which isolates an utterance spoken by a human speaker from one or more additional sounds not spoken by the human speaker, and processing the separated audio data using a text independent speaker identification model to determine whether a verified and/or registered user spoke a spoken utterance captured in the audio data. Various implementations include processing the audio data and/or the separated audio data using an automatic speech recognition model to generate a text representation of the utterance. Additionally or alternatively, the text representation of the utterance can be processed to determine whether at least a portion of the text representation of the utterance captures a particular keyphrase. When the system determines the registered and/or verified user spoke the utterance and the system determines the text representation of the utterance captures the particular keyphrase, the system can cause a computing device to perform one or more actions corresponding to the particular keyphrase.
-
公开(公告)号:US12094453B2
公开(公告)日:2024-09-17
申请号:US17447285
申请日:2021-09-09
Applicant: Google LLC
Inventor: Jiahui Yu , Chung-cheng Chiu , Bo Li , Shuo-yiin Chang , Tara Sainath , Wei Han , Anmol Gulati , Yanzhang He , Arun Narayanan , Yonghui Wu , Ruoming Pang
IPC: G10L15/06 , G10L15/16 , G10L15/187 , G10L15/22 , G10L15/30
CPC classification number: G10L15/063 , G10L15/16 , G10L15/22 , G10L15/30 , G10L15/187
Abstract: A computer-implemented method of training a streaming speech recognition model that includes receiving, as input to the streaming speech recognition model, a sequence of acoustic frames. The streaming speech recognition model is configured to learn an alignment probability between the sequence of acoustic frames and an output sequence of vocabulary tokens. The vocabulary tokens include a plurality of label tokens and a blank token. At each output step, the method includes determining a first probability of emitting one of the label tokens and determining a second probability of emitting the blank token. The method also includes generating the alignment probability at a sequence level based on the first probability and the second probability. The method also includes applying a tuning parameter to the alignment probability at the sequence level to maximize the first probability of emitting one of the label tokens.
-
公开(公告)号:US12051404B2
公开(公告)日:2024-07-30
申请号:US18336211
申请日:2023-06-16
Applicant: Google LLC
Inventor: Tara Sainath , Arun Narayanan , Rami Botros , Yanzhang He , Ehsan Variani , Cyril Allauzen , David Rybach , Ruoming Pang , Trevor Strohman
CPC classification number: G10L15/063 , G10L15/02 , G10L15/22 , G10L15/30
Abstract: An ASR model includes a first encoder configured to receive a sequence of acoustic frames and generate a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames. The ASR model also includes a second encoder configured to receive the first higher order feature representation generated by the first encoder at each of the plurality of output steps and generate a second higher order feature representation for a corresponding first higher order feature frame. The ASR model also includes a decoder configured to receive the second higher order feature representation generated by the second encoder at each of the plurality of output steps and generate a first probability distribution over possible speech recognition hypothesis. The ASR model also includes a language model configured to receive the first probability distribution over possible speech hypothesis and generate a rescored probability distribution.
-
公开(公告)号:US12033641B2
公开(公告)日:2024-07-09
申请号:US18103324
申请日:2023-01-30
Applicant: Google LLC
Inventor: Rajeev Rikhye , Quan Wang , Yanzhang He , Qiao Liang , Ian C. McGraw
IPC: G10L17/24 , G10L15/26 , G10L17/06 , G10L21/028
CPC classification number: G10L17/24 , G10L15/26 , G10L17/06 , G10L21/028
Abstract: Techniques disclosed herein are directed towards streaming keyphrase detection which can be customized to detect one or more particular keyphrases, without requiring retraining of any model(s) for those particular keyphrase(s). Many implementations include processing audio data using a speaker separation model to generate separated audio data which isolates an utterance spoken by a human speaker from one or more additional sounds not spoken by the human speaker, and processing the separated audio data using a text independent speaker identification model to determine whether a verified and/or registered user spoke a spoken utterance captured in the audio data. Various implementations include processing the audio data and/or the separated audio data using an automatic speech recognition model to generate a text representation of the utterance. Additionally or alternatively, the text representation of the utterance can be processed to determine whether at least a portion of the text representation of the utterance captures a particular keyphrase. When the system determines the registered and/or verified user spoke the utterance and the system determines the text representation of the utterance captures the particular keyphrase, the system can cause a computing device to perform one or more actions corresponding to the particular keyphrase.
-
-
-
-
-
-
-
-
-