Abstract:
The invention concerns a method to generate and/or machine gear teeth on a workpiece, wherein the workpiece is subjected to a movement from a first location where the workpiece, while being held by a clamping device connected to a workpiece spindle, is brought into machining engagement with a first tool, to a second location where the work piece, while remaining in its clamped condition, is brought into machining engagement with a second tool, wherein prior to performing the movement, the connection between the clamping device and the workpiece spindle is released, and after the movement, the clamping device is connected to another workpiece spindle for the machining engagement with the second tool.
Abstract:
The invention concerns a method to generate and/or machine gear teeth on a workpiece, wherein the workpiece is subjected to a movement from a first location where the workpiece, while being held by a clamping device connected to a workpiece spindle, is brought into machining engagement with a first tool, to a second location where the work piece, while remaining in its clamped condition, is brought into machining engagement with a second tool, wherein prior to performing the movement, the connection between the clamping device and the workpiece spindle is released, and after the movement, the clamping device is connected to another workpiece spindle for the machining engagement with the second tool.
Abstract:
The invention concerns a method of machining a workpiece, wherein an end-facing tooth edge of a gear profile of the workpiece that was generated by a chip-removing machining process is reworked at a first location into a chamfered edge by way of a plastic forming operation. The material which in the plastic forming operation was displaced towards the end surface of the gear profile is pushed outward as a material protrusion in the end surface of the tooth, while the material displaced towards the flank of the tooth is pushed outward as a material protrusion on the flank side of the chamfer, and the resulting material protrusions in the end surface and on the flank side are removed. The workpiece, while still carrying the material protrusion on the end surface of the gear profile, is transferred to a second location where the protrusion on the flank side of the chamfer is removed.
Abstract:
The invention concerns a method of machining a workpiece, wherein an end-facing tooth edge of a gear profile of the workpiece that was generated by a chip-removing machining process is reworked at a first location into a chamfered edge by way of a plastic forming operation. The material which in the plastic forming operation was displaced towards the end surface of the gear profile is pushed outward as a material protrusion in the end surface of the tooth, while the material displaced towards the flank of the tooth is pushed outward as a material protrusion on the flank side of the chamfer, and the resulting material protrusions in the end surface and on the flank side are removed. The workpiece, while still carrying the material protrusion on the end surface of the gear profile, is transferred to a second location where the protrusion on the flank side of the chamfer is removed.