Abstract:
A system and method are presented for dialogue tree generation. The dialogue tree may be used for generating a chatbot. Similar phrases from phrases comprising the interactions between a first party and a second party are group together from the first party of a cluster. For each group of similar phrases, percentages are determined and compared against a threshold occurrence rate. Anchors are generated and used in alignment in the determination of dialogue flows. Topic-specific dialogue trees may be determined from the dialogue flows. The topic-specific dialogue trees may be modified to generate a deterministic dialogue tree.
Abstract:
A method for detecting and categorizing topics in a plurality of interactions includes: extracting, by a processor, a plurality of fragments from the plurality of interactions; filtering, by the processor, the plurality of fragments to generate a filtered plurality of fragments; clustering, by the processor, the filtered fragments into a plurality of base clusters; and clustering, by the processor, the plurality of base clusters into a plurality of hyper clusters.
Abstract:
A method for extracting, from non-speech text, training data for a language model for speech recognition includes: receiving, by a processor, non-speech text; selecting, by the processor, text from the non-speech text; converting, by the processor, the selected text to generate converted text comprising a plurality of phrases consistent with speech transcription text; training, by the processor, a language model using the converted text; and outputting, by the processor, the language model.
Abstract:
A method for determining a cause of events detected in a plurality of interactions includes: identifying, on a processor, a plurality of elements in the interactions; detecting, on the processor, a plurality of sequences of elements in the interactions; mining, on the processor, the plurality of sequences for generating a set of supported patterns; computing, on the processor, association rules from the set of supported patterns; and returning the computed association rules.
Abstract:
A method includes: receiving, by a processor, a question including text; identifying, by the processor, one or more identified topics from a plurality of tracked topics tracked by an analytics system in accordance with the text of the question, the analytics system being configured to perform analytics on a plurality of interactions with a plurality of agents of a contact center; outputting, by the processor, the one or more identified topics; associating, by the processor, one or more selected topics with the question, the selected topics one or more of the identified topics; adding, by the processor, the question and the selected topics to the evaluation form; and outputting the evaluation form.
Abstract:
A method including: receiving, on a computer system, a text search query, the query including one or more query words; generating, on the computer system, for each query word in the query, one or more anchor segments within a plurality of speech recognition processed audio files, the one or more anchor segments identifying possible locations containing the query word; post-processing, on the computer system, the one or more anchor segments, the post-processing including: expanding the one or more anchor segments; sorting the one or more anchor segments; and merging overlapping ones of the one or more anchor segments; and searching, on the computer system, the post-processed one or more anchor segments for instances of at least one of the one or more query words using a constrained grammar.
Abstract:
Methods, systems, and computer program product for automatically performing sentiment analysis on texts, such as telephone call transcripts and electronic written communications. Disclosed techniques include, inter alia, lexicon training, handling of negations and shifters, pruning of lexicons, confidence calculation for token orientation, supervised customization, lexicon mixing, and adaptive segmentation.
Abstract:
A system and method are presented for dialogue tree generation. The dialogue tree may be used for generating a chatbot. Similar phrases from phrases comprising the interactions between a first party and a second party are group together from the first party of a cluster. For each group of similar phrases, percentages are determined and compared against a threshold occurrence rate. Anchors are generated and used in alignment in the determination of dialogue flows. Topic-specific dialogue trees may be determined from the dialogue flows. The topic-specific dialogue trees may be modified to generate a deterministic dialogue tree.
Abstract:
A method for automatically calculating an overall evaluation score of an interaction includes: receiving, by a processor, an evaluation form, the evaluation form comprising a plurality of automatic questions and a plurality of manual questions; automatically extracting, by a processor, a set of features from the interaction, the set of features comprising answers to the automatic questions without manually generated answers to the manual questions; and computing an overall evaluation score based on the set of features.
Abstract:
A method includes: receiving, by a processor, an evaluation form including a plurality of evaluation questions; receiving, by the processor, an interaction to be evaluated by the evaluation form; selecting, by the processor, an evaluation question of the evaluation form, the evaluation question including a rule associated with one or more topics, each of the topics including one or more words or phrases; searching, by the processor, the interaction for the one or more topics of the rule in accordance with the presence of one or more words or phrases in the interaction to generate a search result; calculating, by the processor, an answer to the evaluation question in accordance with the rule and the search result; and outputting, by the processor, the calculated answer to the evaluation question of the evaluation form.