Abstract:
An imaging system is provided that includes at least one detector configured to acquire imaging information, a processing unit, and a display unit. The processing unit is operably coupled to the at least one detector, and is configured to reconstruct an image using the imaging information. The image is organized into voxels having non-uniform dimensions. The processing unit is configured to perform a penalized likelihood (PL) image reconstruction using the imaging information. The PL image reconstruction includes a penalty function. Performing the penalty function includes interpolating a voxel size in at least one dimension from an original size to an interpolated size before determining a penalty function, determining the penalty function using the interpolated size to provide an initial penalty, interpolating the initial penalty to the original size to provide a modified penalty, and applying the modified penalty in the PL image reconstruction.
Abstract:
Methods and systems are provided for scatter correction in Positron Emission Tomography (PET) imaging. In one embodiment, a method comprises performing an emission scan to acquire emission data, identifying outliers in a tail region of the emission data, discarding a portion of the outliers from the emission data, calculating a linear fit to remaining emission data in the tail region, and correcting the emission data based on the linear fit. In this way, scatter coincidence events can be eliminated even if the emission data is spatially misaligned with transmission data.
Abstract:
A computer-implemented method for penalized-likelihood reconstruction of a Positron Emission Tomography (PET) image includes generating a regularization function in which a smoothing parameter is modulated by one or more data-independent spatially variable modulation factors to compensate for sensitivity variations in a PET voxel dataset, and reconstructing the PET image from the PET emission dataset using the regularization function.
Abstract:
A computer-implemented method for partial volume correction in Positron Emission Tomography (PET) image reconstruction includes receiving emission data related to an activity distribution, reconstructing the activity distribution from the emission data by maximizing a penalized-likelihood objective function to produce a reconstructed PET image, quantifying an activity concentration in a region of interest of the reconstructed PET image to produce an uncorrected quantitation, and correcting the uncorrected quantitation based on a pre-calculated contrast recovery coefficient value to account for a partial volume error in the uncorrected quantitation.
Abstract:
A computer-implemented method for partial volume correction in Positron Emission Tomography (PET) image reconstruction includes receiving emission data related to an activity distribution, reconstructing the activity distribution from the emission data by maximizing a penalized-likelihood objective function to produce a reconstructed PET image, quantifying an activity concentration in a region of interest of the reconstructed PET image to produce an uncorrected quantitation, and correcting the uncorrected quantitation based on a pre-calculated contrast recovery coefficient value to account for a partial volume error in the uncorrected quantitation.
Abstract:
A computer-implemented method for penalized-likelihood reconstruction of a Positron Emission Tomography (PET) image includes generating a regularization function in which a smoothing parameter is modulated by one or more data-independent spatially variable modulation factors to compensate for sensitivity variations in a PET voxel dataset, and reconstructing the PET image from the PET emission dataset using the regularization function.
Abstract:
An imaging system is provided that includes at least one detector configured to acquire imaging information, a processing unit, and a display unit. The processing unit is operably coupled to the at least one detector, and is configured to reconstruct an image using the imaging information. The image is organized into voxels having non-uniform dimensions. The processing unit is configured to perform a penalized likelihood (PL) image reconstruction using the imaging information. The PL image reconstruction includes a penalty function. Performing the penalty function includes interpolating a voxel size in at least one dimension from an original size to an interpolated size before determining a penalty function, determining the penalty function using the interpolated size to provide an initial penalty, interpolating the initial penalty to the original size to provide a modified penalty, and applying the modified penalty in the PL image reconstruction.