Abstract:
A system includes a steam distributor configured to distribute steam received from a steam generator to multiple injection wells in a well pad for steam assisted gravity drainage (SAGD) resource production. The system also includes one or more processors configured to control the steam distributor to distribute the steam to the injection wells according to a resultant scheme including values representing multiple parameters for the SAGD resource production. The parameters include the allocated quantities of steam, pressures within multiple production wells associated with the injection wells, and time periods that the steam is directed into the injection wells. The one or more processors are configured to determine the resultant scheme by performing multiple iterations of a surrogate evaluation process until a stop criterion is met, and identifying the resultant scheme as the sample scheme of a final iteration prior to the stop criterion being met.
Abstract:
A method for determining fleet conditions and operational management thereof, performed by a central system includes receiving fleet data from at least one distributed data repository. The fleet data is substantially representative of information associated with a fleet of physical assets. The method also includes processing the received fleet data for the fleet using at least one process of a plurality of processes. The plurality of processes assess the received fleet data into processed fleet data. The method additionally includes determining a fleet condition status using the processed fleet data and the at least one process of the plurality of processes. The method further includes generating a fleet response. The fleet response is substantially representative of a next operational step for the fleet of physical assets. The method also includes transmitting the fleet response to at least one of a plurality of fleet response recipients.
Abstract:
In an example embodiment, a method of calculating end-of-life (EOL) predictions for a physical asset is provided. A state-space model for the physical asset is obtained, the state-space model being a physics-based model describing a state of the physical asset at a particular time given measurements or observations for the physical asset. Then a current state of the physical asset is inferred. Then a long-term prediction is derived for the physical asset based on the inferred current state of the physical asset and the state-space model for the physical asset. Then an EOL probability distribution function is generated for the physical asset based on the long-term prediction, the EOL probability distribution function describing a range of estimates of EOL for the physical asset and their corresponding confidence intervals.
Abstract:
According to some embodiments, a system, method and non-transitory computer-readable medium are provided comprising a Hypothesis Generation Engine (HGE) to receive one or more property target values for a material; a memory for storing program instructions; an HGE processor, coupled to the memory, and in communication with the HGE, and operative to execute program instructions to: receive the one or more property target values for the material; analyze the one or more property target values as compared to one or more known values in a knowledge base; generate, based on the analysis, an initial set of hypothetical structures, wherein each hypothetical structure includes at least one property target value; execute a likelihood model for each candidate material to generate a likelihood probability for each hypothetical structure, wherein the likelihood probability is a measure of the likelihood that the hypothetical structure will have the target property value; convert each hypothetical structure into a natural language representation; execute an abduction kernel on the natural language representation with the at least one likelihood probability, to output at least one proposed structure that satisfies a likelihood threshold for having the property target value; and receive the output of the executed abduction kernel at a testing module to determine whether the output satisfies the property target values. Numerous other aspects are provided.
Abstract:
A system includes a schedule generator having one or more processors configured to obtain resource extraction parameters for extracting a resource from a reservoir. The resource extraction parameters include well creation parameters associated with drilling wellbores, well stimulation parameters associated with introducing fracturing fluid into the wellbores, and production parameters associated with extracting the resource through the wellbores. The schedule generator selects initial trial schedules having different values of the resource extraction parameters and receives initial resource output data generated by execution of the initial trial schedules with a designated reservoir model. The schedule generator generates a surrogate model based on the initial resource output data and the initial trial schedules and uses the surrogate model to perform iterations of selecting modified trial schedules until a predetermined condition is satisfied.
Abstract:
The system and method disclosed herein provides an integrated and automated workflow, sensor, and reasoning system that automatically detects breaches in protocols, appropriately alarms and records these breaches, facilitates staff adoption of protocol adherence, and ultimately enables the study of protocols for care comparative effectiveness. The system provides real-time alerts to medical personnel in the actual processes of care, thereby reducing the number of negative patient events and ultimately improving staff behavior with respect to protocol adherence.
Abstract:
A system and method for extracting a resource from a reservoir repeatedly alternates between injecting a fluid and injecting a gas into the reservoir. A rate and/or an amount of each of the fluid and the gas that is injected into the reservoir is defined by a first fluid-and-gas ratio function that designates different ratios as a function of time. The ratios designate the rate and/or the amount of the fluid that is injected into the reservoir to the rate and/or the amount of the gas that is injected into the reservoir. The rate and/or the amount at which the fluid and/or the gas is injected into the reservoir is changed according to the ratios designated by the first fluid-and-gas ratio function as time progresses.
Abstract:
The system and method disclosed herein provides an integrated and automated workflow, sensor, and reasoning system that automatically detects breaches in protocols, appropriately alarms and records these breaches, facilitates staff adoption of protocol adherence, and ultimately enables the study of protocols for care comparative effectiveness. The system provides real-time alerts to medical personnel in the actual processes of care, thereby reducing the number of negative patient events and ultimately improving staff behavior with respect to protocol adherence.
Abstract:
A method, system, and non-transitory computer-readable medium, the method including determining automatically, by a processor, whether behavior for a model representing a plurality of entities and relationships therebetween deviates from a reference behavior for the model; determining, in response to the determination that the model does deviate from the reference behavior, at least one basis for the deviation; automatically forecasting an estimate of a remaining useful life for the model; and modifying the model to compensate for the deviation by at least one of modifying the model to accommodate the deviation and updating the model based on at least one new requirement.
Abstract:
The system and method disclosed herein provides an integrated and automated workflow, sensor, and reasoning system that automatically detects breaches in protocols, appropriately alarms and records these breaches, facilitates staff adoption of protocol adherence, and ultimately enables the study of protocols for care comparative effectiveness. The system provides real-time alerts to medical personnel in the actual processes of care, thereby reducing the number of negative patient events and ultimately improving staff behavior with respect to protocol adherence.