Abstract:
System including a sensor configured to be disposed within a reservoir of a machine having moving parts that are lubricated by a liquid in the reservoir. The sensor is configured to obtain a measurement of the liquid that is representative of at least one of a quantity or quality of the liquid in the reservoir. The system also includes a device body operably coupled to the sensor. The device body has a processing unit that is operably coupled to the sensor and configured to generate first data signals representative of the measurement of the liquid. The device body also includes a transmitter that is configured to wirelessly communicate the first data signals to a remote reader.
Abstract:
A system for controlling a consist of rail vehicles or other vehicles includes a control unit electrically coupled to a first rail vehicle in the consist, the control unit having a processor and being configured to receive signals representing a presence and position of one or more tractive effort systems on-board the first vehicle and other rail vehicles in the consist, and a set of instructions stored in a non-transient medium accessible by the processor, the instructions configured to control the processor to create a optimization schedule that manages the use of the one or more tractive effort systems based on the presence and position of the tractive effort systems within the consist.
Abstract:
A system includes a sensor, one or more processors, a transmitter, and a capacitance control structure. The sensor is configured to contact a fluid and measure a characteristic of the fluid. The one or more processors are operably coupled to the sensor. The one or more processors are configured to generate one or more data signals representative of the characteristic of the fluid that is measured by the sensor. The transmitter is operably coupled to the one or more processors. The transmitter is configured to wirelessly communicate the one or more data signals to a remote reader. The capacitance control structure is configured to one or more of reduce or isolate sensor capacitance of the sensor from the one or more processors.
Abstract:
Examples for a traction system are provided. In one example, the traction system includes a nozzle coupled to an air source and configured to be selectively aimed toward a determined portion of a rail surface of a rail, and a conduit configured to supply pressurized air from the air source to the nozzle, the nozzle flexibly coupled thereto. The nozzle is configured for the aim of the nozzle to be controlled to change its aiming direction in response to a change in curvature of the rail, whereby a stream of air from the nozzle impacts the determined portion during movement of the vehicle through the curvature of the rail.
Abstract:
A system includes a sensor configured to be disposed within a reservoir of a machine having moving parts that are lubricated by a liquid in the reservoir. The sensor is configured to obtain a measurement of the liquid that is representative of at least one of a quantity or quality of the liquid in the reservoir. The system also includes a device body operably coupled to the sensor. The device body has a processing unit that is operably coupled to the sensor and configured to generate first data signals representative of the measurement of the liquid. The device body also includes a transmitter that is configured to wirelessly communicate the first data signals to a remote reader.
Abstract:
A method for detecting clogs in a tractive effort system of a rail vehicle or other vehicle includes the steps of determining a baseline air flow rate from an air compressor during steady state conditions, actuating the tractive effort system, determining a secondary air flow rate from the air compressor subsequent to actuation of the tractive effort system, and comparing the secondary air flow rate to the baseline air flow rate.
Abstract:
A system includes a sensor, one or more processors, a transmitter, and a capacitance control structure. The sensor is configured to contact a fluid and measure a characteristic of the fluid. The one or more processors are operably coupled to the sensor. The one or more processors are configured to generate one or more data signals representative of the characteristic of the fluid that is measured by the sensor. The transmitter is operably coupled to the one or more processors. The transmitter is configured to wirelessly communicate the one or more data signals to a remote reader. The capacitance control structure is configured to one or more of reduce or isolate sensor capacitance of the sensor from the one or more processors.
Abstract:
A system for controlling a consist of rail vehicles or other vehicles includes a control unit electrically coupled to a first rail vehicle in the consist, the control unit having a processor and being configured to receive signals representing a presence and position of one or more tractive effort systems on-board the first vehicle and other rail vehicles in the consist, and a set of instructions stored in a non-transient medium accessible by the processor, the instructions configured to control the processor to create a optimization schedule that manages the use of the one or more tractive effort systems based on the presence and position of the tractive effort systems within the consist.
Abstract:
Examples for a traction system are provided. In one example, the traction system includes a nozzle coupled to an air source and configured to be selectively aimed toward a determined portion of a rail surface of a rail, and a conduit configured to supply pressurized air from the air source to the nozzle, the nozzle flexibly coupled thereto. The nozzle is configured for the aim of the nozzle to be controlled to change its aiming direction in response to a change in curvature of the rail, whereby a stream of air from the nozzle impacts the determined portion during movement of the vehicle through the curvature of the rail.
Abstract:
Examples for a traction system are provided. In one example, the traction system includes a nozzle coupled to an air source and configured to be selectively aimed toward a determined portion of a rail surface of a rail, and a conduit configured to supply pressurized air from the air source to the nozzle, the nozzle flexibly coupled thereto. The nozzle is configured for the aim of the nozzle to be controlled to change its aiming direction in response to a change in curvature of the rail, whereby a stream of air from the nozzle impacts the determined portion during movement of the vehicle through the curvature of the rail.