Abstract:
A resin impregnation tower for continuously impregnating the resin impregnable layer of a tubular cured in place liner is provided. The tower is of a height to provide sufficient resin pressure head to impregnate the resin impregnable layer fully. A cured in place liner having at least one layer of resin impregnable material is fed into the top of the tower, drawn down about a roller at the bottom, removed from the top of the tower and then wrapped with an outer impermeable coating. The impregnated liner is suitable for pull-in-and-inflate method of installation or may be inverted. For liners formed with an inner impermeable layer, the liner is suitable for curing with steam.
Abstract:
A longitudinally reinforced resin impregnated cured in place liner with a reinforcing scrim to limit longitudinal stretch is provided. A continuous length of resin impregnable tube is provided in lay flat condition, impregnated with resin and a scrim having greater strength in the warp direction than in the weft direction is placed on a portion of the bottom of the tube that is then feed into a tubular former where an impermeable film is formed into a tube sealed and continuously everted about the inner tubular member and scrim traveling in an opposite direction so that the everted wrapping envelopes the tubular member. The reinforced tube may have an integral inner impermeable layer that is installed in an existing pipeline by the pull-in-and-inflate method.
Abstract:
A process for lining an existing pipeline or conduit with a flexible resin impregnated cured in place liner by pulling in the liner and inflating an eversion bladder with air and curing the liner with flow-through steam without loss of pressure is provided. The bladder is stored in a pressure bladder canister coupled to a pressurized downtube and eversion elbow. The bladder is everted by introducing pressurized air into the caniste. As the bladder reaches the distal manhole, it enters a receiving canister where it is punctured while maintaining air pressure within the bladder a pinch valve between the downtube and elbow isolates the inverted bladder so that steam can be introduced into the bladder to cure the resin and exhaust through the receiving canister. The bladder is then removed and lateral service reinstated.
Abstract:
A process for lining an existing pipeline or conduit with a flexible resin impregnated cured in place liner by pulling in the liner and inflating an eversion bladder with air and curing the liner with flow-through steam without loss of pressure is provided. The bladder is stored in a pressure bladder canister coupled to a pressurized downtube and eversion elbow. The bladder is everted by introducing pressurized air into the canister As the bladder reaches the distal manhole, it enters a receiving canister where it is punctured while maintaining air pressure within the bladder a pinch valve between the downtube and elbow isolates the inverted bladder so that steam can be introduced into the bladder to cure the resin and exhaust through the receiving canister. The bladder is then removed and lateral service reinstated.
Abstract:
A process for lining an existing pipeline or conduit with a flexible resin impregnated cured in place liner by pulling in the liner and inflating a resin impregnated inflation bladder with air and curing the liner with flow-through steam without loss of pressure is provided. The liner includes a resin absorbent material in tubular form with an impermeable membrane forming an outer layer. The inflation bladder also includes a resin absorbent material in tubular form with an impermeable membrane forming an outer layer and an exhaust assembly at the trailing end and is passed through a pressurized inversion apparatus into the collapsed liner. As the bladder reaches the distal end, the exhaust assembly exits the everting bladder and is coupled to an exhaust hose. Steam is then introduced the inversion apparatus to cure the resin and is exhausted through the exhaust tube. After cure, steam is replaced with air to cool the liner and the ends are cut to restore service through the host pipe.
Abstract:
Installation of a flexible cured in place liner by inverting the liner utilizing an inversion sleeve assembly with an installation apparatus having at least one selectively operable rigid gland. The sleeve assembly includes a sleeve portion of an absorbable material secured in an apparatus with an inversion boot fitted at the distal end with an inlet port for inversion and/or curing fluid. The sleeve assembly and apparatus are particularly well suited for inverting with air and curing the liner with steam introduced through a perforated lay flat hose using an apparatus with two glands. The installation sleeve is the same dimension as the liner to be installed and is reusable thereby substantially reducing the set up time to install using the dual gland apparatus. Preferably, the flexible sleeve is a length of dry cured in place liner inverted on to itself to expose two impregnable surfaces. The sleeve may have a built in fluid inlet port for use with a dual gland apparatus.
Abstract:
A longitudinally reinforced resin impregnated cured in place liner with at least an outer impermeable layer of a coated reinforcing scrim to limit longitudinal stretch is provided. A continuous length of resin impregnable liner is provided in lay flat condition and impregnated. The impregnated liner is then fed into a tubular former where a resin impermeable coated scrim in tubular form having greater strength in the warp direction than in the weft direction is fed into a tubular form, sealed and continuously inverted about the inner tubular member so that the inverted wrapping envelopes the tubular member. The reinforced liner may have an integral inner impermeable layer that may also be longitudinally reinforced is installed in an existing pipeline.
Abstract:
A resin impregnated cured in place liner having an everted outer impermeable coating is provided. A roll of a continuous length of resin impregnable material is formed into a tube. An impermeable film or wrapping is formed into a tube about a tubular former, sealed and continuously everted about the inner tubular member travelling in an opposite direction so that the everted wrapping envelopes the inner tubular member. Alternatively, the inner tubular member may be passed into a stuffer tube having an impermeable tube thereon that is everted onto the moving tubular member to encapsulate the inner tubular member. The inner tubular member may be passed through an open resin impregnation tank to impregnate the impregnable material prior to everting the outer layer thereon. The inner tubular member may have an inner layer of impermeable material bonded thereto. It may be formed into a tube with the impermeable layer on the outside and continuously everted to place the impermeable layer on the inside of the tube.
Abstract:
A method of continuously impregnating a resin impregnable cured in place liner in a resin impregnation tower is provided. A cured in place liner having at least one layer of resin impregnable material is fed into the top of the tower, drawn down about a roller at the bottom, removed from the top of the tower and then wrapped with an outer impermeable coating. The tower is filled with resin at a suitable height to provide a sufficient pressure head of resin to impregnate the resin impregnable material fully. The impregnated liner is suitable for inversion or the pull-in-and-inflate method of installation. For liners formed with an inner impermeable layer, the liner is suitable for curing with steam.