摘要:
A high-level vehicle command is determined based on a location of the vehicle with respect to a route including a start location and a finish location. An image is acquired of the vehicle external environment. Steering, braking, and powertrain commands are determined based on inputting the high-level command and the image into a Deep Neural Network. The vehicle is operated by actuating vehicle components based on the steering, braking and powertrain commands.
摘要:
A computing system can receive a stabilized image stream, wherein the stabilized image stream is drift-corrected based on determining that an input image stream is stable and then applying drift correction to maintain a stabilized field of view, wherein the field of view is stabilized with respect to the real world. The computing system can operate a vehicle based on determining at least one moving object in the stabilized image stream.
摘要:
A system and methods are described for generating a super-resolution depth-map. A method includes: determining a plurality of unmeasured depth-map positions using measured depth-elements from a first sensor and spatial-elements from a second sensor; for each of the plurality, calculating estimated depth-elements using a gradient-based optimization; and generating a super-resolution depth-map that comprises the measured and estimated depth-elements.
摘要:
A system includes a processor for performing one or more autonomous driving or assisted driving tasks based on a neural network. The neural network includes a base portion for performing feature extraction simultaneously for a plurality of tasks on a single set of input data. The neural network includes a plurality of subtask portions for performing the plurality of tasks based on feature extraction output from the base portion. Each of the plurality of subtask portions comprise nodes or layers of a neutral network trained on different sets of training data, and the base portion comprises nodes or layers of a neural network trained using each of the different sets of training data constrained by elastic weight consolidation to limit the base portion from forgetting a previously learned task.
摘要:
A controller may be programmed to create a speech utterance set for speech recognition training by, in response to receiving data representing a neutral utterance and parameter values defining signal noise, generating data representing a Lombard effect version of the neutral utterance using a transfer function associated with the parameter values and defining distortion between neutral and Lombard effect versions of a same utterance due to the signal noise.
摘要:
A method or system that receives a product definition that includes a feature family having data defining one or more product features. The product definition including one or more corresponding rules defining one or more relationships between one or more product features. The method or system receiving input selecting one or more feature families of interest. The method or system identifying the one or more rules that provide a relationship connecting the one or more feature families to the selected feature families of interest. The method or system converting the identified rules to one or more positive logic rule groups. The method or system generating one or more global representations of the product definition by interacting the one or more positive logic rule groups to produce a result that defines the relationship between the interacted positive logic rule groups and storing the results that are determined as being valid.
摘要:
A system, comprising a computer that includes a processor and a memory, the memory storing instructions executable by the processor to input a red-green-blue (RGB) image and an eccentricity image to a neural network which outputs a located object based on combining the RGB image and the eccentricity image, wherein the eccentricity image is based on a per-pixel rolling average and a per-pixel rolling variance over a moving window of k video frames. The memory can further include instructions executable by the processor to receive the located object at a computing device included in one or more of a vehicle or a traffic information system.
摘要:
The present invention extends to methods, systems, and computer program products for classifying time series image data. Aspects of the invention include encoding motion information from video frames in an eccentricity map. An eccentricity map is essentially a static image that aggregates apparent motion of objects, surfaces, and edges, from a plurality of video frames. In general, eccentricity reflects how different a data point is from the past readings of the same set of variables. Neural networks can be trained to detect and classify actions in videos from eccentricity maps. Eccentricity maps can be provided to a neural network as input. Output from the neural network can indicate if detected motion in a video is or is not classified as an action, such as, for example, a hand gesture.
摘要:
A system and methods are described for calibrating one sensor with respect to another. A method includes: determining a depth-motion vector using a first sensor; determining an optical-motion vector using a second sensor; and calibrating the first sensor with respect to the second sensor by minimizing a cost function that evaluates a distance between the depth-motion and optical-motion vectors.
摘要:
A computing system can determine moving objects in a sequence of images based on recursively calculating red-green-blue (RGB) eccentricity 249 k based on a video data stream. A vehicle can be operated based on the determined moving objects. The video data stream can be acquired by a color video sensor included in the vehicle or a traffic infrastructure system.