摘要:
A switched mode power converter includes a closed loop feedback control mechanism for regulating an output characteristic and a resonant type circuit for inclusion of resonant energy delivery. The characteristic impedance of the resonant type circuit is modified from an optimal energy transfer configuration to one that dampens fluctuations in a feedback signal used by the closed loop feedback mechanism. The modified characteristic impedance functions to dampen those fluctuations in the feedback signal resulting from leakage inductance energy provided by the resonant type circuit.
摘要:
A power transmission pad is configured to provide wireless power transmission to a receiving device where the receiving device is orientation-free relative to the pad. The pad functions as a transmitter and is magnetically “hot”, meaning the pad generates a magnetic field when powered on. The receiving device, such as a cell phone, tablet, or other portable electronic device, is placed within the magnetic field for the purpose of charging the device battery. In contrast to conventional wireless battery charging systems, there are no restrictions on the orientation of the receiving device relative to the pad. The power transmission pad includes a sweep frequency generator for generating power transmissions across a frequency spectrum. An optimal frequency is determined for maximum energy transfer to the receiving device, and the sweep frequency generator is locked to the determined optimal frequency.
摘要:
A power regulation control circuit is implemented as part of a power converter. The power regulation control circuit is implemented during two modes, a sleep mode and a wake-up mode. During the sleep mode, the power regulation control circuit detects a no-load presence and artificially increases the output voltage Vout to its maximum allowable value. This can be accomplished by pulling up an output of an error amplifier that feeds a PWM module. During the wake-up mode while the power converter wakes up from the sleep mode under maximum load, the output voltage Vout sinks from the artificially higher voltage, but still stays above a minimum operational voltage level. A slew rate compensation can be implemented to control a rate at which the output voltage drops when a load is applied. The artificially high output voltage during no-load condition and the slew rate compensation provide open loop voltage adjustment.
摘要:
A driver circuit is configured using a depletion-mode MOSFET to supply an output voltage across an output capacitor. The driver circuit includes a resistor positioned between two terminals of the MOSFET. In the case of an n-channel depletion-mode MOSFET, the resistor is coupled to the source and the gate. The circuit is a current controlled depletion driver that turns OFF the depletion-mode MOSFET by driving a reverse current through the resistor to establish a negative potential at the gate relative to the source. A Zener diode is coupled between the source of the depletion-mode MOSFET and the output capacitor to establish a voltage differential between the output and the MOSFET source.
摘要:
A power transmission pad is configured to provide wireless power transmission to a receiving device where the receiving device is orientation-free relative to the pad. The pad functions as a transmitter and is magnetically “hot”, meaning the pad generates a magnetic field when powered on. The receiving device, such as a cell phone, tablet, or other portable electronic device, is placed within the magnetic field for the purpose of charging the device battery. In contrast to conventional wireless battery charging systems, there are no restrictions on the orientation of the receiving device relative to the pad. The power transmission pad includes a sweep frequency generator for generating power transmissions across a frequency spectrum. An optimal frequency is determined for maximum energy transfer to the receiving device, and the sweep frequency generator is locked to the determined optimal frequency.
摘要:
A switched mode power converter having a feedback mechanism by which a coded train of pulses with well defined integrity is generated on a secondary side of the power converter and transmitted to a dedicated control signal winding on the primary side for decoding and application to regulate the power converter output. The control signal winding enables separation of control signal transmission and power transmission resulting in improved processing of the control signal by a primary side controller. The pulse train is modulated by a secondary side controller, transmitted across a transformer and received by the control signal winding, and supplied to the primary side controller. Coded information is included in the coded pulse train by modulating pulses of the pulse train.
摘要:
A switched mode power converter is configured having predominate secondary side control. A primary side driving circuit is configured as a responsive state machine the output of which is input as the driving signal for a main switch. An output voltage, current or power is sensed and the secondary side controller compares the sensed output characteristic with a predefined reference. The comparison results in an error that signifies an amount that the output is out of regulation. The secondary side controller drives a secondary side switch to generate a voltage pulse across the secondary winding. The voltage pulse has a pulse width that represents the amount of error in the output characteristic. The voltage pulse is transmitted across the transformer and received by the primary side driving circuit, which generates a driving signal modulated according to the voltage pulse and drives the main switch to regulate the output characteristic.
摘要:
A power regulation control circuit is implemented as part of a power converter. The power regulation control circuit is implemented during two modes, a sleep mode and a wake-up mode. During the sleep mode, the power regulation control circuit detects a no-load presence and artificially increases the output voltage Vout to its maximum allowable value. This can be accomplished by pulling up an output of an error amplifier that feeds a PWM module. During the wake-up mode while the power converter wakes up from the sleep mode under maximum load, the output voltage Vout sinks from the artificially higher voltage, but still stays above a minimum operational voltage level. A slew rate compensation can be implemented to control a rate at which the output voltage drops when a load is applied. The artificially high output voltage during no-load condition and the slew rate compensation provide open loop voltage adjustment.
摘要:
A driver circuit is configured using a depletion-mode MOSFET to supply an output voltage across an output capacitor. The driver circuit includes a resistor positioned between two terminals of the MOSFET. In the case of an n-channel depletion-mode MOSFET, the resistor is coupled to the source and the gate. The circuit is a current controlled depletion driver that turns OFF the depletion-mode MOSFET by driving a reverse current through the resistor to establish a negative potential at the gate relative to the source. A Zener diode is coupled between the source of the depletion-mode MOSFET and the output capacitor to establish a voltage differential between the output and the MOSFET source.
摘要:
A power transmission pad is configured to provide wireless power transmission to multiple portable electronic devices where each device is orientation-free relative to the pad. The power transmission pad is also configured to be power adaptive by changing the power transmission level depending on the number of devices being concurrently charged. Each device, is placed within the magnetic field for the purpose of charging the device battery. The power transmission pad includes a sweep frequency generator for generating power transmissions across a frequency spectrum. The number of devices to be charged is determined as well as an optimal frequency for maximum energy transfer to each device. A single combined optimal frequency is determined using the optimal frequencies determined for each individual device. The sweep frequency generator is locked to the single combined optimal frequency and a power transmission level is set according to the number of devices.