IDENTIFYING AND PROCESSING RECOMMENDATION REQUESTS
    2.
    发明申请
    IDENTIFYING AND PROCESSING RECOMMENDATION REQUESTS 审中-公开
    识别和处理建议要求

    公开(公告)号:US20160042069A1

    公开(公告)日:2016-02-11

    申请号:US14455798

    申请日:2014-08-08

    Applicant: FACEBOOK, INC.

    CPC classification number: G06F17/30864 G06F17/278 G06F17/3043 G06Q50/00

    Abstract: In one embodiment, a method includes receiving unstructured text from a user of a social-networking system, determining whether the unstructured text includes a request for a recommendation, identifying one or more first entity names in the unstructured text, generating a structured query based upon the one or more first entity names, identifying, in the social graph, one or more second entity names corresponding to the structured query, and presenting the one or more second entity names and the unstructured text in a social context of the user. The unstructured text may include text of a post or message generated by the user on a social-networking system. A score may be generated based on the unstructured text to determine whether the text includes a request for recommendation using a machine-learning model based on comparison of the unstructured text to the one or more predetermined words associated with requests for recommendation.

    Abstract translation: 在一个实施例中,一种方法包括从社交网络系统的用户接收非结构化文本,确定非结构化文本是否包括对推荐的请求,识别非结构化文本中的一个或多个第一实体名称,基于 所述一个或多个第一实体名称在所述社交图中标识与所述结构化查询相对应的一个或多个第二实体名称,以及在所述用户的社会环境中呈现所述一个或多个第二实体名称和所述非结构化文本。 非结构化文本可以包括用户在社交网络系统上生成的帖子或消息的文本。 可以基于非结构化文本来生成分数,以基于非结构化文本与与推荐请求相关联的一个或多个预定单词的比较来确定文本是否包括使用机器学习模型的推荐请求。

    Identifying and processing recommendation requests

    公开(公告)号:US10127316B2

    公开(公告)日:2018-11-13

    申请号:US14455798

    申请日:2014-08-08

    Applicant: Facebook, Inc.

    Abstract: In one embodiment, a method includes receiving unstructured text from a user of a social-networking system, determining whether the unstructured text includes a request for a recommendation, identifying one or more first entity names in the unstructured text, generating a structured query based upon the one or more first entity names, identifying, in the social graph, one or more second entity names corresponding to the structured query, and presenting the one or more second entity names and the unstructured text in a social context of the user. The unstructured text may include text of a post or message generated by the user on a social-networking system. A score may be generated based on the unstructured text to determine whether the text includes a request for recommendation using a machine-learning model based on comparison of the unstructured text to the one or more predetermined words associated with requests for recommendation.

Patent Agency Ranking