Abstract:
A drive device includes a magnetic circuit unit including a first yoke, a second yoke, and a first magnet, a magnetic circuit unit including the first yoke, the second yoke, a second magnet, a first coil that is bonded to a focus lens, in which the magnetic circuit units drive the first coil and the focus lens by an electromagnetic force generated in the first coil, the first magnet corresponds to a first movement amount of movement of the focus lens, and the second magnet corresponds to a second movement amount of movement of the focus lens.
Abstract:
A lens driving mechanism includes first and second piezoelectric rods that move a lens and first and second sensors that detect a position of the lens. An angle formed between a line (a first piezoelectric line) that extends from the first piezoelectric rod to be perpendicular to an optical axis and a line (a first sensor line) that extends from the first sensor to be perpendicular to the optical axis is smaller than 90°. An angle formed between a line (a second piezoelectric line) that extends from the second piezoelectric rod to be perpendicular to the optical axis and a line (a second sensor line) that extends from the second sensor to be perpendicular to the optical axis is smaller than 90°.
Abstract:
A lens unit includes a guided portion that includes a first bearing portion and a second bearing portion disposed to be spaced apart from each other in a direction X and is slidably supported by a guide shaft, and a lens holding member. The lens unit includes a first tilt-preventing member having a linear expansion coefficient lower than a linear expansion coefficient of the lens holding member. The first tilt-preventing member is fixed to a region of the guided portion positioned between the first bearing portion and second bearing portion.
Abstract:
Provided are a lens barrel and an imaging device, with which it is possible to lock an optical member of which the movement in an optical axis direction is made free in a case where there is no electrification, particularly to hold the optical member in a locked state without use of electric power. A movable frame that holds a focus lens is driven in the optical axis direction by a linear motor. In a case where the movable frame is to be locked with the linear motor being not electrified, the movable frame (engagement portion) is caused to abut onto a restriction portion at an end portion of the movable range of the movable frame and a locking ring is caused to rotationally move to a locking position by an electric actuator. Accordingly, the movable frame is fixed by the restriction portion and a locking portion of the locking ring to become unable to move. The electric actuator includes a worm gear as a power transmission mechanism and it is possible to hold the locking ring at the locking position by means of an irreversible rotation function of the worm gear.
Abstract:
An acoustic wave detector that detects an acoustic wave from a subject, an optical fiber that guides light emitted from a light source to a probe body, and a light guide member that guides light from a light entrance end, which is optically coupled to the optical fiber, to a light exit end, which is located in the vicinity of the acoustic wave detector, are provided. The light guide member is secured in the probe body with a securing material provided at least partially around the light guide member. The conditional expression below is satisfied: sin−1(n2/n1)×(180°/π)
Abstract:
An optical fiber guides light output from a light source to an ultrasound probe. The ultrasound probe includes a light guiding section that guides the light from a light input end, which is optically coupled with the optical fiber to a light output end provided in the vicinity of ultrasonic transducers. The light guiding section has a first light guiding portion that includes the light input end, and a second light guiding portion that includes the light output end. The first light guiding portion is formed by glass, and magnifies input light. The second light guiding portion is formed by resin, and emits the light toward a subject from the light output end.
Abstract:
An optical fiber guides light output from a light source to an ultrasound probe. The ultrasound probe includes a light guiding section that guides the light from a light input end, which is optically coupled with the optical fiber to a light output end provided in the vicinity of ultrasonic transducers. The light guiding section has a first light guiding portion that includes the light input end, and a second light guiding portion that includes the light output end. The first light guiding portion is formed by glass, and magnifies input light. The second light guiding portion is formed by resin, and emits the light toward a subject from the light output end.
Abstract:
An acoustic wave detector that detects an acoustic wave from a subject, an optical fiber that guides light emitted from a light source to a probe body, and a light guide member that guides light from a light entrance end, which is optically coupled to the optical fiber, to a light exit end, which is located in the vicinity of the acoustic wave detector, are provided. The light guide member is secured in the probe body with a securing material provided at least partially around the light guide member. The conditional expression below is satisfied: sin−1(n2/n1)×(180°/π)
Abstract:
In an acoustic image generation apparatus with a probe having an ultrasonic transducer, providing a scanning length setting part that sets a target scanning length in a scanning process of the probe, a coordinate obtaining part that sequentially obtains a coordinate of the probe in real space, a scanned length calculation part that calculates a scanned length based on the coordinate obtained by the coordinate obtaining part, a progress level display generation part that generates a progress level display that indicates progress of the scanning process based on the target scanning length and the scanned length, and a display part that displays the progress level display.
Abstract:
A control method used in a system including a moving body and an imaging apparatus includes an acquisition step of acquiring factor information, including movement information related to the moving body, via the imaging apparatus, an adjustment step of adjusting a position of a moving mechanism that moves an image sensor or an imaging lens provided in the imaging apparatus, based on the factor information, an imaging step of imaging a subject by using the image sensor after the adjustment step is executed, and a correction step of correcting a shake applied to the image sensor or the imaging lens by using the moving mechanism in a case in which the imaging step is executed.