Abstract:
The imaging optical system forms a first intermediate image at a position conjugate to a magnification side imaging surface and a second intermediate image at a position closer to a reduction side than the first intermediate image on an optical path and conjugate to the first intermediate image. The imaging optical system consists of a first optical system, a second optical system, and a third optical system in order from the magnification side to the reduction side along the optical path. The imaging optical system does not include a reflective member having a power.
Abstract:
In an optical system composed of, in order from the object side, an objective optical system and a reflective surface optical system disposed along the optical axis of the objective optical system, a first reflective surface is turned around a turning axis passing through the intersection between the first reflective surface and the optical axis and is perpendicular to the plane that includes the optical axes before and after being bent by the first reflective surface. Further, the first reflective surface and the second reflective surface are turned synchronously around turning axes, each passing through the intersection between each corresponding reflective surface with the optical axis, being deviated from the normal to each corresponding reflective surface, and being arranged in parallel to each other, whereby an image formed by the objective optical system is shifted to move the image location of the objective optical system.
Abstract:
The imaging optical system forms a first intermediate image at a position conjugate to the magnification side imaging surface and a second intermediate image at a position closer to a reduction side than the first intermediate image on an optical path and conjugate to the first intermediate image. The imaging optical system consists of a first optical system, a second optical system, and a third optical system in order from a magnification side to the reduction side along the optical path. The imaging optical system is configured to be telecentric on the reduction side. The imaging optical system satisfies predetermined conditional expressions.
Abstract:
A zoom lens forms an intermediate image at a position conjugate to a reduction side imaging plane and forms the intermediate image again on a magnification side imaging plane. The zoom lens includes a plurality of lens groups including at least two movable lens groups, which move by changing spacings between the groups adjacent to each other in a direction of an optical axis during zooming, at a position closer to the reduction side than the intermediate image. Among the plurality of lens groups, a final lens group closest to the reduction side has a positive refractive power, and remains stationary with respect to the reduction side imaging plane during zooming. The zoom lens satisfies predetermined conditional expressions (1) and (2).
Abstract:
A projection zoom lens is essentially constituted by, in order from the magnification side: a negative first lens group, which is fixed when changing magnification; a positive second lens group, which moves when changing magnification; a plurality of other lens groups; and a final lens group, which is fixed when changing magnification. The distances among all adjacent lens groups change when changing magnification. The first through third lenses from the magnification side within the first lens group are a first single lens having an aspherical surface with a concave surface toward the magnification side and a negative refractive power in the paraxial region, a second single lens having an aspherical surface, and a third lens. A first lens group front group constituted by the first through third lenses has a negative refractive power. Predetermined conditional formulae are satisfied.
Abstract:
A zoom lens for projection substantially consists of a negative first lens group, a positive second lens group, a positive third lens group, a negative fourth lens group, a positive fifth lens group, and a positive sixth lens in this order from a magnification side. The first lens group and the sixth lens group are fixed and the second lens group through the fifth lens group move during magnification change. A reduction side is telecentric. First through fourth lenses from the magnification side in the fifth lens group are a negative meniscus-shaped single lens with its convex surface facing the magnification side, a positive single lens, a biconcave lens and a biconvex lens, respectively, and the biconcave lens and the biconvex lens are cemented together.
Abstract:
Composing a projection zoom lens with a first lens group disposed on the most magnification side and having a positive power, the lens group being fixed at the time of zooming, a final lens group disposed on the most reduction side and having a negative power, the lens group being fixed at the time of zooming, and a plurality of lens groups disposed between the first and final lens groups and moved at the time of zooming along an optical axis in association with each other for the zooming and correction of image plane shift arising from the zooming, in which the final lens group includes a lens having a positive power on the most reduction side.
Abstract:
A projection-type display device includes: a display element including a rectangular displayable region in which an image is displayable; and a projection optical system. Assuming that a focal length of the projection optical system is f and a length of a long side of the displayable region is w, 0.15
Abstract:
An imaging lens consists of a front group and a rear group in order from the object side to the image side. The front group includes, as lenses, in order from the object side to the image side, only a positive meniscus lens having a surface convex toward the object side, a first cemented lens having a negative power as a whole, and a second cemented lens having a positive power as a whole. In the first cemented lens, a positive lens and a negative lens are cemented in order from the object side, with a surface convex toward the object side and a surface concave toward the image side. The rear group includes a negative most image side lens having a surface concave toward the object side at a position closest to the image side.
Abstract:
The zoom lens forms an intermediate image at a position conjugate to a reduction side imaging plane and forms the intermediate image again on a magnification side imaging plane. The zoom lens includes: a first optical system on the magnification side; and a second optical system on the reduction side. The intermediate image is formed between the magnification side and the reduction side. The second optical system includes two or more movable lens groups, which move by changing spacings between the groups adjacent to each other in a direction of an optical axis during zooming, and two stationary lens groups which remain stationary with respect to the reduction side imaging plane during zooming. One stationary lens group of the two stationary lens groups is disposed to be closest to the reduction side, and has a positive refractive power. In addition, a lens group closest to the magnification side in the second optical system has a positive refractive power.