摘要:
Described herein is a method for making a depressed index cladding for the inner cladding of an optical fiber. The method involves making the depressed index cladding in two steps. The innermost portion of the inner cladding is produced using a soot method, thereby deriving the advantages of the soot method for the region of the cladding that carries the most optical power, then forming the remaining portion of the inner cladding layer using a rod-in-tube step. This method effectively marries the advantages and disadvantages of both methods.
摘要:
Described herein is a method for making a depressed index cladding for the inner cladding of an optical fiber. The method involves making the depressed index cladding in two steps. The innermost portion of the inner cladding is produced using a soot method, thereby deriving the advantages of the soot method for the region of the cladding that carries the most optical power, then forming the remaining portion of the inner cladding layer using a rod-in-tube step. This method effectively marries the advantages and disadvantages of both methods.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
摘要:
A riveting yoke assembly (11) comprises a yoke (30), a force applying mechanism (22) and a rivet forming device (34,36). The yoke has a first end (38), a second end (40), and a middle section (42) coupled between the first and second ends (38,40). An opening (44) is formed through the yoke between the first and second ends. The force applying mechanism (22) is coupled to the first end (38) of the yoke (30). The lower rivet forming device (36) is removably coupled to the second end (40) of the yoke. The lower rivet forming device (36) has a base end (46) attached to the second end (40) of the yoke (30) and a forming end (48) with a recess (50) to form rivets (17). The recess (50) has a concave, interior surface (52) having an annular step (54) positioned between a top edge (56) of the interior surface (52) and a bottom-most point (58) of the interior surface (52) in order to properly align the rivet (17).