Abstract:
A method for ascertaining at least one pipe wall resonance frequency of a pipeline in the region of a measuring point by means of a field device of process measurements technology having at least a first ultrasonic transducer, which is placed on the pipeline at the measuring point, comprising steps as follows: providing a first transfer function Utransducer(f) at least of the first or a plurality of ultrasonic transducers located in the region of the measuring point; ascertaining a received spectrum Urec(f) from a received signal Urec(t) after transmission of an ultrasonic signal; ascertaining a second transfer function Umeasuring point(f) from the first transfer function Utransducer(f) of the first or the plurality of ultrasonic transducers and from the received spectrum urec(f), wherein the second transfer function Umeasuring point(f) is characteristic for the measuring point; and ascertaining the at least one pipe wall resonance frequency fres, especially a plurality of resonance frequencies, in the region of the measuring point by evaluating the second transfer function Umeasuring point(f) from step III, as well as a clamp-on, ultrasonic, flow measuring device, a method for ascertaining flow, a method for ascertaining a change of the measuring point and an identification device.
Abstract:
An ultrasonic, flow measuring device, comprising a measuring tube having a straight measuring tube axis, a transmitter for sending an acoustic signal on a first signal path, a receiver for receiving the acoustic signal on the first signal path and a number of reflection surfaces, on which the acoustic signal is reflected at least once on the first signal path, wherein minimum separations of at least three subsections from the measuring tube axis lie in the range 0.4-0.6 r, wherein r is the inner radius of the measuring tube.
Abstract:
A method for ascertaining a compensated flow and/or a compensated flow velocity, wherein the compensation of a flow related measurement error occurs in the context of a flow measurement with a two path measuring of an ultrasonic, flow measuring device, comprising: an arrangement of at least two ultrasonic transducers pairs on a tube, or pipe, wherein the ultrasonic transducers are in a 180°, two path, one traverse, or a 90°, two path, two traverse arrangement, by means of an evaluation unit of a flow measuring device and/or a computer, characterized by steps as follows: a) feeding information relative to the type of a flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; b) feeding information relative to distance (xa-xd) of the arrangement of the ultrasonic transducer pairs from the flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; c) compensating a measurement error by means of a correction factor kD as a function of information from steps a) and b); and d) ascertaining a flow corrected by the correction factor kD and/or a flow velocity corrected by the correction factor kD, as well as an ultrasonic, flow measuring device and a computer program product.
Abstract:
A method for putting into operation and/or checking an ultrasonic, flow measuring point using a service unit, wherein the service unit has a display unit and a camera, wherein the measuring point includes a pipeline for conveying a medium and at least one ultrasonic transducer, includes identifying the measuring point vis a vis the service unit; ascertaining settable parameters based on the identity of the measuring point; registering geometric data of at least one part of the measuring point by means of the camera; analyzing registered geometric data and deriving at least one parameter value for at least one of the parameters to be set based on the analytical result and the identity; ascertaining at least one optimum mounting position based at least on the derived parameter value; and mounting an ultrasonic transducer at one of the ascertained optimum mounting positions.
Abstract:
An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.
Abstract:
A measuring device for measuring flow and/or composition of a measured medium in a pipe or tube by registering an ultrasonic measurement signal includes a measurement transmitter and a connection adapter for mechanical securement of the measurement transmitter on the pipe or tube, in which the connection adapter has a longitudinal axis and the measuring device includes a measuring transducer element and at least one metal hose, wherein at least one signal transmission cable is arranged in the metal hose for signal transmission between the measurement transmitter and a sensor element, and wherein the metal hose mechanically connects the measuring transducer element with the connection adapter.
Abstract:
A measuring system, embodied as a clamp-on, ultrasonic, flow measuring device, comprises a tube, or a pipe, having a lumen surrounded by a tube, or pipe, wall, which tube or pipe is adapted to guide a volume portion of the fluid in its lumen; an ultrasonic transducer mounted on the tube, or pipe, on an outside of the tube, or pipe, wall facing away from the lumen, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to convert a time varying electrical voltage into ultrasonic waves propagating through the tube, or pipe, wall and further through fluid guided in the lumen; an ultrasonic transducer mounted on the tube, or pipe, separated from the ultrasonic transducer on the outside of the tube, or pipe, wall, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to receive ultrasonic waves propagating through fluid guided in the lumen, and further through the tube, or pipe, wall and to transduce such into an electrical voltage varying as a function of time; as well as an operating- and measuring electronics adapted to generate, a driver signal for the ultrasonic transducer. The driver signal has a time variable, electrical voltage, for effecting a received signal, of the ultrasonic transducer likewise having an electrical voltage, uB,II, varying as a function of time, in such a manner that both the driver signal, as well as also the received signal, each contain a plurality of spectral signal components, equally as well, in each case, a dominating spectral signal component having a maximum power spectral density, and that a frequency, of the dominating signal component of the driver signal, deviates by a magnitude of no more than |±100 kHz| from a frequency of the dominating signal component of the received signal, and/or by no more than 10% of the frequency of the dominating signal component of the received signal, from such frequency. Furthermore, the operating- and measuring electronics is adapted to produce by means of the received signal, at least one measured value for the at least one parameter.
Abstract:
A measuring system, embodied as a clamp-on, ultrasonic, flow measuring device, comprises a tube, or a pipe, having a lumen surrounded by a tube, or pipe, wall, which tube or pipe is adapted to guide a volume portion of the fluid in its lumen; an ultrasonic transducer mounted on the tube, or pipe, on an outside of the tube, or pipe, wall facing away from the lumen, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to convert a time varying electrical voltage into ultrasonic waves propagating through the tube, or pipe, wall and further through fluid guided in the lumen; an ultrasonic transducer mounted on the tube, or pipe, separated from the ultrasonic transducer on the outside of the tube, or pipe, wall, and acoustically coupled via the tube, or pipe, wall to fluid guided in the lumen, and adapted to receive ultrasonic waves propagating through fluid guided in the lumen, and further through the tube, or pipe, wall and to transduce such into an electrical voltage varying as a function of time; as well as an operating- and measuring electronics adapted to generate, a driver signal for the ultrasonic transducer. The driver signal has a time variable, electrical voltage, for effecting a received signal, of the ultrasonic transducer likewise having an electrical voltage, uB,II, varying as a function of time, in such a manner that both the driver signal, as well as also the received signal, each contain a plurality of spectral signal components, equally as well, in each case, a dominating spectral signal component having a maximum power spectral density, and that a frequency, of the dominating signal component of the driver signal, deviates by a magnitude of no more than |±100 kHz| from a frequency of the dominating signal component of the received signal, and/or by no more than 10% of the frequency of the dominating signal component of the received signal, from such frequency. Furthermore, the operating- and measuring electronics is adapted to produce by means of the received signal, at least one measured value for the at least one parameter.
Abstract:
An ultrasonic flow meter comprising: a measurement pipe, which has a measurement pipe wall, at least in some parts a basic shape having a rotationally symmetric or polygonal cross-section, and a straight measurement pipe axis; a transmitter for transmitting an acoustic signal on a first signal path; and a receiver for receiving the acoustic signal on the first signal path; The measurement pipe has a plurality of reflection surfaces, by which the acoustic signal on the first signal path is reflected multiple times, and wherein the reflection surfaces are integrally formed from the measurement pipe wall, the reflection surfaces for reflecting the acoustic signal being designed in such a way that one or more of the reflection surfaces at least partially protrude into the basic shape of the measurement pipe and one or more of the reflection surfaces project outward at least from the basic shape of the measurement pipe.
Abstract:
An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.