Abstract:
Provided is a security surveillance system and method capable of separately detecting fire and intrusion situations on the basis of a sound field variation, including a sound generating device outputting, into a set security surveillance space, a multi-tone sound wave formed of a linear sum of sine waves having a plurality of frequency components, a sound receiving device obtaining sound field information for each frequency represented as sound pressure and a phase from a sound wave received in the security surveillance space, and a sound field signal processing device storing sound field information for each frequency obtained from the sound receiving device in a preparation mode, comparing the stored sound field information with current sound field information for each frequency output from the sound receiving device in a surveillance mode, and determining occurrence of a security situation.
Abstract:
Provided is a wireless power transmission apparatus. The apparatus includes an ultrasound transmitter generating an ultrasound signal in response to an external source voltage and transmitting the generated ultrasound signal to a medium layer and an ultrasound receiver receiving the ultrasound signal through the medium layer and converting the received ultrasound signal into a driving voltage. The ultrasound transmitter and receiver are manufactured to control impedance values thereof to be matched with each other and a distance between the ultrasound transmitter and receiver is controlled according to predetermined distance conditions.
Abstract:
Disclosed are a method and a system for monitoring a fire based on a detection of sound field variation. The system for monitoring a fire based on a detection of sound field variation includes: a sound generator outputting a sound wave within a defined space according to input voltage; a sound receiver receiving the sound wave within the defined space and obtaining a sound pressure from the received sound wave; and a fire monitor using a sound transfer function representing a ratio of the sound pressure obtained by the sound receiver to input voltage of the sound generator in a preparation mode to calculate reference sound pressure information, using the sound transfer function in a monitoring mode to calculate current sound pressure information, and comparing the reference sound pressure information with the current sound pressure information to determine whether a fire occurs.