Abstract:
Disclosed is a beamforming method using a deep neural network. The deep neural network may include an input layer, L hidden layers, and an output layer, and the beamforming method may include: obtaining channel information h between a base station and K terminals and a transmit power limit value P of the base station, and inputting h and P into the input layer; and performing beamforming on signals to be transmitted to the K terminals using beamforming vectors derived using the output layer and at least one activation function, wherein the base station transmits the signals to the K terminals using M transmit antennas. Here, the output layer may be configured in a direct beamforming learning (DBL) scheme, a feature learning (FL) scheme, or a simplified feature learning (SFL) scheme.
Abstract:
An apparatus and method for beam-forming communication in a mobile wireless backhaul network. The apparatus included in a base station includes: an antenna unit radiating a beam according to predetermined beam characteristics and transmitting a signal of the base station to a mobile terminal in a high speed moving body; a position searching unit detecting a distance, a speed, and a direction of movement between the base station and the mobile terminal; a beam setting unit grouping one or more beams according to the detected distance between the base station and the mobile terminal and setting the number of beam search groups in which a beam search is to be performed and a beam search period according to the detected speed and direction of movement; and a beam searching unit searching for the beam of the mobile terminal based on beam setting values set by the beam setting unit.
Abstract:
A transmitting apparatus for modulating data based on a predetermined 2q-QAM constellation and a receiving apparatus and method for demodulating a signal based on the predetermined 2q-QAM constellation, wherein the last q-2 bits corresponding to a quadrant of the predetermined 2q-QAM constellation are same with a gray code of a 2q-2-QAM constellation, the last q-2 bits corresponding to the remaining quadrants of the predetermined 2q-QAM constellation are determined by performing symmetric transformation for the last q-2 bits of the quadrant of the predetermined 2q-QAM around the x-axis or the y-axis.
Abstract:
Disclosed are a random access method and a random access apparatus in a wireless communication system. An operation method of a terminal in a communication system, according to the present invention, comprises receiving system information including configuration information on a physical random access channel (PRACH) composed of a plurality of access slots from a first base station; selecting one access slot among the plurality of access slots based on the configuration information; and transmitting a random access preamble to the first base station through the one access slot. Therefore, the capacity of the random access channel can be increased without further occupation of radio resources.
Abstract:
A variable frequency microwave pulse generator that includes a high voltage charger for charging with a high voltage, a high pressure gas tank for supplying insulation gas, and an electrode discharge unit. The electrode discharge unit includes a case, an accommodation section defined inside the case, and a pair of electrode sections disposed at one side and the other side of the accommodation section so as to face each other. The pair of electrode sections is spaced apart from each other to define a spark gap therebetween where the insulation gas supplied from the high pressure gas tank is loaded. An annular resonance recess is defined at the central portion of one electrode section of the pair of electrode sections, the depth of the resonance recess being variable in response to an adjustment knob disposed on the case being manipulated.
Abstract:
There is provided a method for acquiring and modifying uplink and downlink synchronization, by which, if there is a possibility of ISI occurring due to incorrect downlink synchronization of a terminal with a base station, the terminal receives a ranging response from the base station, modifies incorrect downlink synchronization, and acquires uplink synchronization in accordance with modified downlink synchronization. The method for acquiring and modifying uplink and downlink synchronization efficiently prevents, in a cooperative communication network, discrepancy in signal transmission synchronization between the base stations, excessive attenuation of a transmitted signal, or a delay caused by a difference in reflection paths.
Abstract:
A high speed moving terminal including first and second antennas each communicating with first and second radio units (RUs) of a base station distributedly installed in a mobile wireless backhaul network communicates with the first and second RUs, respectively, with different uplink-downlink configuration of the first RU and the second RU, and transmits control information of the corresponding downlink signal in an uplink subframe that comes first in the time domain after processing latency of a downlink signal received from the first RU among uplink frames with the uplink-downlink configurations of the first RU and the second RU if the downlink signal is received from the first RU through the first antenna.
Abstract:
The polarization beamforming communication apparatus of a base station estimates an azimuth, elevation, and polarization of each of terminals using a reference signal of a terminal received through a plurality of dual polarization antennas, determines a stream to be transmitted based on the azimuth, elevation, and polarization of the terminal, and sends the stream to be transmitted to the terminal through a polarization-matched beam formed in accordance with each of the plurality of dual polarization antennas using the azimuth, elevation, and polarization of the terminal.
Abstract:
A clustering wireless base station includes a group digital processor including a plurality of digital units (DU) and a plurality of remote radio frequency units (RRU) that are connected to the group digital processor through a transport network and that are installed in each service target area. In this case, each DU includes a decoder that decodes upward data that is received from the each DU, and each RRU includes an encoder that encodes downward data from the each DU.
Abstract:
The present invention relates to a base station device and a signal transmitting method thereof. The base station device according to the present invention includes a digital signal processing device configured to separate transmission data into a first data area and a second data area, to verify whether first data detected from the first data area is pre-transmitted data, to compress any one of the first data and second data detected from the second data area based on a result of the verifying, and to transmit the compressed data via an interface, and a radio signal processing device configured to combine the first data and the second data and wirelessly transmit the transmission data when the second data is received from the digital signal processing device in a state in which the first data is received via the interface connected to the digital signal processing device and stored.