-
公开(公告)号:US11337676B2
公开(公告)日:2022-05-24
申请号:US16714848
申请日:2020-02-12
摘要: A method and system for optimizing RF energy delivery to a tissue ROI with a thermoacoustic system includes directing with a RF applicator, RF energy pulses into the tissue ROI having an object of interest and a reference separated by a boundary; detecting with a thermoacoustic transducer, a multi-polar thermoacoustic signal generated at the boundary in response to the RF energy pulses and processing the multi-polar acoustic signal to determine a peak-to-peak amplitude; detecting with the thermoacoustic transducer, an artifact multi-polar thermoacoustic signal generated at a location other than the boundary and processing it to determine a peak-to-peak amplitude; utilizing an electromagnetic model coupled with a model of patient anatomy to place dielectric or conducting materials near the thermoacoustic transducer or the RF applicator to optimize a signal-to-noise ratio of the multi-polar thermoacoustic signal generated at the boundary or minimize the artifact multi-polar thermoacoustic signal generated at a location other than the boundary; and directing with the RF applicator, RF energy pulses into the ROI for a thermoacoustic measurement and determine a parameter of the object of interest.
-
公开(公告)号:US20210244384A1
公开(公告)日:2021-08-12
申请号:US16714848
申请日:2020-02-12
摘要: A method and system for optimizing RF energy delivery to a tissue ROI with a thermoacoustic system includes directing with a RF applicator, RF energy pulses into the tissue ROI having an object of interest and a reference separated by a boundary; detecting with a thermoacoustic transducer, a multi-polar thermoacoustic signal generated at the boundary in response to the RF energy pulses and processing the multi-polar acoustic signal to determine a peak-to-peak amplitude; detecting with the thermoacoustic transducer, an artifact multi-polar thermoacoustic signal generated at a location other than the boundary and processing it to determine a peak-to-peak amplitude; utilizing an electromagnetic model coupled with a model of patient anatomy to place dielectric or conducting materials near the thermoacoustic transducer or the RF applicator to optimize a signal-to-noise ratio of the multi-polar thermoacoustic signal generated at the boundary or minimize the artifact multi-polar thermoacoustic signal generated at a location other than the boundary; and directing with the RF applicator, RF energy pulses into the ROI for a thermoacoustic measurement and determine a parameter of the object of interest.
-