Abstract:
When a poor meter to socket connection occurs, there is the potential for arcing to develop which can result in a hot socket and a fire. Disclosed herein are methods for a meter to detect the occurrence of an arc condition in the socket by analyzing the RF noise on the channels of the communication spectrum used by the meter to communicate within its metering system. For example, by keeping a record of the normal background noise and looking for a broadband increase in the noise on all channels, arc detection can be achieved. Meter quantities such as temperature, current, voltage, and harmonic content may also be used in a standalone manner or in combination with broadband RF noise to detect an arc condition. A disconnect switch within the meter can be opened to remove the arc fault.
Abstract:
Synchronous FHSS networks operating within mesh networks typically require a certain amount of network traffic to maintain time as well as for executing other functions, such as registration and neighbor discovery. The concepts presented in this disclosure provide a mesh network with enhanced communication capabilities without adding significant hardware or firmware costs to nodes within the network. The disclosed concept of using acquisition channels (frequencies) integrated within FHSS pseudo-random sequences speeds network responses to conditions like outage and restoration. Assignment of unique hop sequences by hop level or at time of manufacture can guarantee minimal network contention while minimizing system network traffic.
Abstract:
Techniques are disclosed herein for providing wireless network communication nodes with opt-out capabilities. Such capabilities may, for example, allow particular customers to opt out of a typical full-scale communication mode such that their associated equipment operates at least temporarily in a limited communication mode. The limited communication mode may limit customer exposure to emissions resulting from RF communications near their homes or other areas, which may be attractive to customers such as those with health or other emission-related concerns.
Abstract:
Synchronous FHSS networks operating within mesh networks typically require a certain amount of network traffic to maintain time as well as for executing other functions, such as registration and neighbor discovery. The concepts presented in this disclosure provide a mesh network with enhanced communication capabilities without adding significant hardware or firmware costs to nodes within the network. The disclosed concept of using acquisition channels (frequencies) integrated within FHSS pseudo-random sequences speeds network responses to conditions like outage and restoration. Assignment of unique hop sequences by hop level or at time of manufacture can guarantee minimal network contention while minimizing system network traffic.