Abstract:
Provided is a Bluetooth Low Energy (BLE) communication module that supports a dynamic multi-link to configure a wireless ad hoc network. The BLE communication module includes a master configured to scan an advertising message transmitted from a slave of another BLE communication module and a slave connected to the master through an internal interface and configured to receive a scan message transmitted from a master of the other BLE communication module and transmit an advertising message corresponding to the scan message. Each of the master and the slave has a predetermined multi-port and a routing table for processing transmitted or received data.
Abstract:
An operation method of a first apparatus for supporting disaster communications includes obtaining map information of a disaster area from a server; obtaining information on a location of the first apparatus, and obtaining environmental condition information of the first apparatus indicating a risk of an area to which the first apparatus belongs; obtaining information on a location and environmental condition information of a second apparatus located in the disaster area from the second apparatus; determining a disaster risk level indicating a risk level for each location in the disaster area based on the location and environmental condition information of the first apparatus and the location and environmental condition information of the second apparatus; and updating the map information by reflecting the disaster risk level.
Abstract:
In relation to a security function of a radio frequency identification (RFID) tag, an RFID tag and a method of updating a key of the RFID tag that may manage a key to be used for an access to a reader by storing the key in a memory having a duplex structure, thereby minimizing an update error occurring during a process of updating the key are provided.
Abstract:
A walking analysis method includes measuring impacts due to floor landing occurring during walking; identifying an impact section before floor landing, a free fall section, and an impact peak section by floor landing in an impact graph over time; analyzing at least one impact-related parameter for the impact section before floor landing, the free fall section, and the impact peak section by floor landing; and determining a walking-related accident type according to a result of analyzing the at least one impact-related parameter. Accordingly, by classifying and detecting a variety of accidents that may actually occur, the main walking characteristics that are dangerous in the actual accident can be extracted.
Abstract:
A mobile ad-hoc routing apparatus includes a first communication module and a second communication module configured to transmit and receive data through a first communication band and a second communication band, respectively, a memory configured to store a program for transmitting and receiving the data, and a processor configured to execute the program stored in the memory, wherein when the program is executed, the processor receives first control information broadcast by one or more neighboring nodes via the first communication module and stores the first control information in the memory, wherein the first control information includes current position and communication status information of the neighboring node, the processor updates information on the neighboring node on the basis of the first control information, generates packet forwarding information which includes information on a node which currently allows packet data to be transmitted based on the updated information on the neighboring node, and stores the generated packet forwarding information in the memory, and the processor determines a subsequent node which allows the packet data to be transmitted to a destination node on the basis of the packet forwarding information and transmits the packet data to the subsequent node via the second communication module.
Abstract:
An operation method of a first apparatus for supporting disaster communications includes obtaining map information of a disaster area from a server; obtaining information on a location of the first apparatus, and obtaining environmental condition information of the first apparatus indicating a risk of an area to which the first apparatus belongs; obtaining information on a location and environmental condition information of a second apparatus located in the disaster area from the second apparatus; determining a disaster risk level indicating a risk level for each location in the disaster area based on the location and environmental condition information of the first apparatus and the location and environmental condition information of the second apparatus; and updating the map information by reflecting the disaster risk level.
Abstract:
A wireless power transmitting apparatus converts rotational energy of an axle to electrical energy, transfers the electrical energy to a transmitting coil of the wireless power transmitting apparatus through a power transfer connection pin that connects the inside of the wheel and the outside of the wheel of a vehicle, and wirelessly transmits the electrical energy to the sensor using resonance between a transmitting coil of the wireless power transmitting apparatus and a receiving coil of the sensor in order to use it as a driving power source of a sensor that detects a state of a tire.