Abstract:
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP).
Abstract:
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP).
Abstract:
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP).
Abstract:
One or more derived versions of image content may be obtained by interpolating two or more source versions of the same image content. A derived version may be targeted for a class of displays that differs from classes of displays targeted by the source versions. Source images in a source version may have been color graded in a creative process by a content creator/colorist. Interpolation of the source versions may be performed with interpolation parameters having two or more different values in two or more different clusters in at least one of the source images. A normalized version may be used to allow efficient distribution of multiple versions of the same content to a variety of downstream media processing devices, and to preserve or restore image details otherwise lost in one or more of the source versions.
Abstract:
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP).
Abstract:
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP).
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce image capture device sensor outputs if applied to an image capture device. The synthesized substantially rectangular spectral representation can be utilized in generating output color values of an output color space from image capture device sensor outputs, where the image capture device sensor outputs correspond to an image captured by an image capture device. The generated output color values correspond to colors perceived by the human visual system for the same image as that captured by the image capture device. Image capture device gamut is also determined.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce image capture device sensor outputs if applied to an image capture device. The synthesized substantially rectangular spectral representation can be utilized in generating output color values of an output color space from image capture device sensor outputs, where the image capture device sensor outputs correspond to an image captured by an image capture device. The generated output color values correspond to colors perceived by the human visual system for the same image as that captured by the image capture device. Image capture device gamut is also determined.
Abstract:
A digital cinema signal is encoded to produce a resulting coded digital cinema bitstream. Decoding the resulting coded digital cinema bitstream allows backwards-compatible delivery of digital cinema content. A digital image or video signal is preprocessed to produce two normalized digital image or video signals of differing quality levels and forward and inverse mapping parameters, which relate the normalized digital image or video signals. The preprocessing can be used prior to the encoding of a digital cinema signal to enable backwards-compatible delivery of digital cinema content.
Abstract:
One or more derived versions of image content may be obtained by interpolating two or more source versions of the same image content. A derived version may be targeted for a class of displays that differs from classes of displays targeted by the source versions. Source images in a source version may have been color graded in a creative process by a content creator/colorist. Interpolation of the source versions may be performed with interpolation parameters having two or more different values in two or more different clusters in at least one of the source images. A normalized version may be used to allow efficient distribution of multiple versions of the same content to a variety of downstream media processing devices, and to preserve or restore image details otherwise lost in one or more of the source versions.