Abstract:
A fluorescent light tube retrofit with light emitting diodes (LEDs) that evenly distribute light to avoid bright spots is disclosed. One LED lighting unit includes a tubular housing and a plurality of LED assemblies mounted about a circumference of the tubular housing. LEDs face inward from a mounting surface that is angled offset of the tube. Alternatively, at least one LED can be oriented to emit light parallel to a tangent of the housing into a light pipe that curves inside at least a portion of the tubular housing.
Abstract:
A LED-based replacement light for a fluorescent socket is constructed such that an entirety of a radially outer portion of a tubular housing at least partially defined by a high-dielectric light transmitting portion is formed of a high-dielectric material. Forming a radially outer portion of the tubular housing of a high-dielectric material prevents a person handling the light from being shocked as a result of capacitive coupling occurring when the LED-based replacement light is installed one end at a time. A circuit board is in thermally conductive relation with the tubular housing, allowing for conduction of heat generated by the LEDs from a side of circuit board opposite the LEDs to the tubular housing for dissipation to the ambient environment.
Abstract:
A LED-based replacement light for a fluorescent socket is constructed such that an entirety of a radially outer portion of a tubular housing at least partially defined by a high-dielectric light transmitting portion is formed of a high-dielectric material. Forming a radially outer portion of the tubular housing of a high-dielectric material prevents a person handling the light from being shocked as a result of capacitive coupling occurring when the LED-based replacement light is installed one end at a time. A circuit board is in thermally conductive relation with the tubular housing, allowing for conduction of heat generated by the LEDs from a side of circuit board opposite the LEDs to the tubular housing for dissipation to the ambient environment.
Abstract:
A fluorescent light tube retrofit with light emitting diodes (LEDs) that evenly distribute light to avoid bright spots is disclosed. One LED lighting unit includes a tubular housing and a plurality of LED assemblies mounted about a circumference of the tubular housing. LEDs face inward from a mounting surface that is angled offset of the tube. Alternatively, at least one LED can be oriented to emit light parallel to a tangent of the housing into a light pipe that curves inside at least a portion of the tubular housing.
Abstract:
Disclosed herein are embodiments of failure alerting systems for LED lamps and LED lamps having the same. An illustrative failure alerting system comprises a photodetector configured to detect an actual light output from the at least one LED, a regulator configured to receive a signal from the photodetector when the actual light output is below a target light output and to increase a current to the at least one LED to maintain the target light output, and a low light output indicator configured to receive a signal from the photodetector when the actual light output remains below the target light output and to produce a low light output signal. A thermal sensor can also be included and configured to sense an operating temperature of the LED and to control the regulator to increase the current and the target light output to ensure the operating temperature does not exceed the target temperature.
Abstract:
A fluorescent light tube retrofit with light emitting diodes (LEDs) that evenly distribute light to avoid bright spots is disclosed. One tube in the form of a conventional fluorescent tube includes two LEDs mounted to the tube on opposite sides of a single circumference of the tube. The LEDs can face the center of the tube, or the LEDs can be offset facing relative to the center of the tube. A reflecting surface can be disposed inside the tube to reflect light evenly toward an arc of the tube. Alternatively, at least one LED can be oriented to direct light into a light pipe that curves around the interior of the tube.
Abstract:
A fluorescent light tube retrofit with light emitting diodes (LEDs) that evenly distribute light to avoid bright spots is disclosed. One tube in the form of a conventional fluorescent tube includes two LEDs mounted to the tube on opposite sides of a single circumference of the tube. The LEDs can face the center of the tube, or the LEDs can be offset facing relative to the center of the tube. A reflecting surface can be disposed inside the tube to reflect light evenly toward an arc of the tube. Alternatively, at least one LED can be oriented to direct light into a light pipe that curves around the interior of the tube.
Abstract:
Disclosed herein are embodiments of failure alerting systems for LED lamps and LED lamps having the same. An illustrative failure alerting system comprises a photodetector configured to detect an actual light output from the at least one LED, a regulator configured to receive a signal from the photodetector when the actual light output is below a target light output and to increase a current to the at least one LED to maintain the target light output, and a low light output indicator configured to receive a signal from the photodetector when the actual light output remains below the target light output and to produce a low light output signal. A thermal sensor can also be included and configured to sense an operating temperature of the LED and to control the regulator to increase the current and the target light output to ensure the operating temperature does not exceed the target temperature.
Abstract:
A LED lighting unit including an elongated heat sink having two spaced apart longitudinal grooves, the grooves facing tangentially or at an angle greater than an angle between a tangent of the lighting unit at the groove and a radius of the lighting unit at the groove. At least one LED is mounted to the heat sink between the grooves, and the at least one LED is enclosed by a lens having bulged longitudinal edges by sliding the bulged longitudinal edges into the grooves.
Abstract:
A LED lighting unit including an elongated heat sink having two spaced apart longitudinal grooves, the grooves facing tangentially or at an angle greater than an angle between a tangent of the lighting unit at the groove and a radius of the lighting unit at the groove. At least one LED is mounted to the heat sink between the grooves, and the at least one LED is enclosed by a lens having bulged longitudinal edges by sliding the bulged longitudinal edges into the grooves.