Abstract:
Novel diacylglycerophosphoric acid esters include a hydrophobic diacyl glycerol portion to provide water insolubility and a head group which forms a chromophore or a chromophore precursor when the head group is enzymatically released and are chromogenic substrates useful to assay for enzymes catalyzing the cleavage of phosphate ester or phosphoanhydride bonds adjacent or opposite to the phosphatidic acid region of a phospholipid molecule.
Abstract:
Disclosed are compositions and formulations comprising enzymes or other biocatalyst that cleave surface-accessible DNA polymers and/or glycoprotein carbohydrate chains at galactose residues in dental calculus, and optionally further include one or more proteolytic enzymes, thereby destroying the structural integrity of the calculus, and allowing it to be readily removed without requiring special treatment by a trained dental professional. Also disclosed are methods for removing dental calculus using the disclosed compositions and formulations.
Abstract:
Disclosed are compositions and formulations comprising enzymes or other biocatalyst that cleave surface-accessible DNA polymers and/or glycoprotein carbohydrate chains at galactose residues in dental calculus, and optionally further include one or more proteolytic enzymes, thereby destroying the structural integrity of the calculus, and allowing it to be readily removed without requiring special treatment by a trained dental professional. Also disclosed are methods for removing dental calculus using the disclosed compositions and formulations.