Abstract:
Optical fiber sensors adapted to measure strain or pressure are disclosed. The optical fiber sensor has a lead-in optical fiber having an end surface at a forward end, and a first optical element having a body with an outer dimension, Do, a front end surface coupled to the lead-in optical fiber, a pedestal including a retracted surface that is spaced from the front end surface, the retracted surface at least partially defining an optical cavity, a gutter surrounding the pedestal, the gutter having a gutter depth defining an active region of length, L, the first optical element further exhibiting L/Do≧0.5. Also provided are systems including the optical fiber sensor, and methods for manufacturing and using the optical fiber sensor. Numerous other aspects are provided.
Abstract:
Methods of manufacturing optical devices are disclosed. The method includes providing a structure-forming fiber bonded to at least one other optical component, the structure-forming fiber having a preferentially-etchable portion including at least one radial etching boundary and at least one axial etching boundary, and etching the preferentially-etchable portion to the radial and axial etching boundaries to produce a precise optical structure. The preferentially-etchable portion may be removed through one or more radial openings in the structure-forming fiber. Numerous other aspects are provided.
Abstract:
Optical fiber sensors adapted to measure strain or pressure are disclosed. The optical fiber sensor has a lead-in optical fiber having an end surface at a forward end, and a first optical element having a body with an outer dimension, Do, a front end surface coupled to the lead-in optical fiber, a pedestal including a retracted surface that is spaced from the front end surface, the retracted surface at least partially defining an optical cavity, a gutter surrounding the pedestal, the gutter having a gutter depth defining an active region of length, L, the first optical element further exhibiting L/Do≧0.5. Also provided are systems including the optical fiber sensor, and methods for manufacturing and using the optical fiber sensor. Numerous other aspects are provided.
Abstract:
Methods of manufacturing optical devices are disclosed. The method includes providing a structure-forming fiber bonded to at least one other optical component, the structure-forming fiber having a preferentially-etchable portion including at least one radial etching boundary and at least one axial etching boundary, and etching the preferentially-etchable portion to the radial and axial etching boundaries to produce a precise optical structure. The preferentially-etchable portion may be removed through one or more radial openings in the structure-forming fiber. Numerous other aspects are provided.