摘要:
In accordance with embodiments of the present disclosure, an information handling system may include a processor and an air mover control system for controlling at least one air mover configured to drive airflow to one or more components of the information handling system. The air mover control system may be configured to read from an information handling resource of the information handling system, wherein the information handling resource comprises an active cooling system, a fault condition cooling requirement defining a minimum airflow required by the information handling resource from the at least one air mover in presence of a fault condition of the active cooling system. The air mover control system may also be configured to read from the information handling resource a variable indicating whether the fault condition of the active cooling system exists. The air mover control system may also be configured to, responsive to the variable indicating the fault condition exists, determine a speed for the at least one air mover to satisfy the fault condition cooling requirement and cause the at least one air mover to operate at the speed.
摘要:
A method may include: (i) based on an error between a setpoint value and a measured process value, determining an integrated error indicative of a time-based integral of the error; (ii) based on the error, determining a differential error indicative of a time-based derivative of the error; (iii) based on the integrated error and the error, generating a proportional-integral output driving signal; (iv) based on the differential error and the error, generating a proportional-differential output driving signal; (v) determining whether the differential error is stable; (vi) responsive to determining that the differential error is stable, generating a driving signal for controlling a plant based on the proportional-differential output driving signal and independent of the proportional-integral output driving signal; (vii) responsive to determining that the differential error is unstable, generating the driving signal for controlling the plant based on the proportional-differential output driving signal and the proportional-integral output driving signal.
摘要:
Thermal conditions at processing components disposed in an information handling system are estimated by applying conservation of energy and component power consumption so that discrete control of information handling system exhaust temperatures is more accurately maintained. For example, a PCI backplane communications card has its power consumption estimated based upon its width so that air flow through the information handling system is adequate to meet an exhaust temperature constraint.
摘要:
A system may include a plurality of temperature sensors configured to sense temperatures at a plurality of locations associated with an information handling system, a cooling subsystem comprising at least one cooling fan configured to generate a cooling airflow in the information handling system and a thermal manager communicatively coupled to the plurality of temperature sensors and the cooling subsystem. The thermal manager may be configured to, based on at least a power provided to a subsystem of the information handling system, estimate a thermal condition proximate to the subsystem and set a speed of the at least one cooling fan based on the estimated thermal condition and a required linear airflow velocity associated with the subsystem.
摘要:
An information handling system may include an information handling resource, an air mover configured to drive air to cool the information handling resource, and a thermal control system for controlling the air mover and configured to determine an air speed requirement for the air mover and regulate an air speed of the air mover to optimize an airflow-versus-power efficiency of the air mover while satisfying the air speed requirement.
摘要:
In accordance with embodiments of the present disclosure, an information handling system may include a processor and an air mover control system for controlling at least one air mover configured to drive airflow to one or more components of the information handling system. The air mover control system may be configured to read from an information handling resource of the information handling system, wherein the information handling resource comprises an active cooling system, a fault condition cooling requirement defining a minimum airflow required by the information handling resource from the at least one air mover in presence of a fault condition of the active cooling system. The air mover control system may also be configured to read from the information handling resource a variable indicating whether the fault condition of the active cooling system exists. The air mover control system may also be configured to, responsive to the variable indicating the fault condition exists, determine a speed for the at least one air mover to satisfy the fault condition cooling requirement and cause the at least one air mover to operate at the speed.
摘要:
A baseboard management control subsystem may determine a fan speed value associated with a fan speed used to cool a particular hardware configuration of an information handling system. The baseboard management control subsystem may further determine a power value associated with a power consumed by a fan running at the determined fan speed value. The baseboard management system may manage power within the information handling system based on the determined fan speed value and the determined power value.
摘要:
An information handling system may include a circuit board that includes a plurality of expansion slots. The information handling system may further include a cooling card coupled to at least one of the plurality of expansion slots, and a processor coupled to the circuit board (but where the cooling card does not contain the processor). Further, the processor may include a heat exchanger coupled thereto. The cooling card may include a heatsink, and a fluid channel thermally coupled to the heatsink, the fluid channel being fluidically coupled to the heat exchanger.
摘要:
An Information Handling System (IHS) and method provide for a thermal controller receiving from a temperature sensor a current operating temperature of the at least one functional device. The thermal controller determines a first rate of an air mover based at least in part on the current operating temperature sensed by the temperature sensor and the instantaneous component maximum temperature. The first rate prevents the at least one functional component from exceeding the instantaneous component maximum temperature. The thermal controller determines a second rate of the air mover based at least in part on lifetime average temperature and the long-term average temperature target that is selected for the reliability level. The thermal controller controls the air mover to operate at a higher one of the first and second rates.
摘要:
A system may include a plurality of temperature sensors configured to sense temperatures at a plurality of locations associated with an information handling system, a cooling subsystem comprising at least one cooling fan configured to generate a cooling airflow in the information handling system, and a thermal manager communicatively coupled to the plurality of temperature sensors and the cooling subsystem. The thermal manager may be configured to, based on at least a power provided to a subsystem of the information handling system, estimate a thermal condition proximate to the subsystem and set a speed of the at least one cooling fan based on the estimated thermal condition and a required cubic airflow rate associated with the subsystem, wherein the required cubic airflow rate is determined based on a required linear airflow velocity associated with the subsystem and a net cross-sectional area through which the cooling airflow travels.