Abstract:
An address resolution system a host device, a first networking device, and a second networking device that is coupled to the host device and the first networking device. The second networking device is configured to send a first address resolution communication to the first networking device. The second networking device may then receive a second address resolution communication from the first networking device in response to the first address resolution communication. The second address resolution communication includes networking device identification data that identifies the first networking device as having a networking type. The second networking device may then allocate, in an address resolution database in response to the networking device identification data identifying the first networking device as having the networking type, a first address resolution entry for the first networking device that includes an egress object.
Abstract:
Described herein are systems and methods that provide for auto-discovery of VXLAN tunnel endpoints (VTEPs) using a protocol-independent multicast (PIM) bootstrap router (BSR). In one or more embodiments, a node may be configured via PIM messaging in which nodes of a network provide their candidate-rendezvous point (RP) advertisements send their information of candidate-RP to multicast group information to an elected BSR. The elected BSR consolidates the candidate-RP to multicast group information and propagates this information to nodes through PIM messages to all PIM routers in the network. In one or more embodiments, a node uses this information in combination with its local configuration mapping of VNIDs-to-multicast-group information to generate a remote VTEP-IP-(RP)-to-VNID mapping, which can be used to auto configure the node's VXLAN with remote-VTEP and VNI profiles in static VXLAN deployments.
Abstract:
A system and method for rapid virtual link trunk connection failure handling includes receiving a packet at a first network switching unit where the packet is to be forwarded to a second network switching unit, detecting a failure in a network connection between the first network switching unit and the second network switching unit and associated with a first LAG of the first network switching unit, determining a second LAG associated with an inter-chassis link (ICL) as a failover LAG for the first LAG, redirecting the packet to the second LAG, altering the packet to set a redirection status bit to a logic value, and forwarding the altered packet using the ICL.
Abstract:
A system, method, and computer-readable medium are disclosed for managing an IT environment via a social network management operation. In various embodiments, the social network management operation enables an IT administrator to manage an IT environment using a social network analog. With the social network analog, IT administrators identify devices within the IT environment as friends. Additionally, in certain embodiments, events that occur in the devices which have been identified as friends by the IT administrators can be associated with an interest list. Additionally, in certain embodiments, the IT environment includes a plurality of spans of control, each of which is administered by different IT administrators.
Abstract:
Various embodiments of the invention allow for rapid communication in virtual link trunking (VLT) networks in which network traffic flows over not all-homed VLT peer devices, while honoring Equal Cost Multi Path (ECMP) decisions and normal route decisions about next hops. Traffic flow is made deterministic and free of sub-optimal paths that otherwise cause unnecessary traffic over inter-node links in the VLT domain. In embodiments, this is accomplished by using receiving VLAN interface-IP addresses from VLT devices in order to create and use a sub-LAG egress table from which sets of ports that lead to intended VLT devices are derived. In embodiments, instead of a VLAN interface-IP addresses a routing MAC address is used when forming the sub-LAG.
Abstract:
Aspects of the present invention include an arbitrary N-Node virtual link trunking (VLT) system comprising a set of N nodes collectively provide a logical fabric-level view that is consistent across the set of N nodes. Embodiments of the arbitrary N-Node VLT system comprise a control plane mechanism to provide Layer 2 multipathing between access network devices (switches or servers) and the core network. The N-Node VLT system provides a loop-free topology with active-active load-sharing of uplinks from access to the core. Accordingly, the N-Node VLT system eliminates the disadvantage of Spanning Tree Protocol (STP) (active-standby links) by allowing link aggregation group (LAG) terminations on multiple separate distribution or core switches and also supporting a loop-free topology. Additional benefits of an N-Node VLT system include, but are not limited to, higher resiliency, improved link utilization, and improved manageability of the network.
Abstract:
A system and method for traffic polarization during failures includes a communication network cluster including a first network switching unit configured to communicate with a first network node via a first network link and a second network node via a second network link, a second network switching unit configured to communicate with the first network node via a third network link and the second network node via a fourth network link, and a first intra-cluster link coupling the first network switching unit to the second network switching unit. The second network switching unit is further configured to respond to a failure in the fourth network link by broadcasting a route withdrawal message to the first network switching unit and the first network node. The first network switching unit is configured to accept rerouted network traffic from the first network node via the first network link resulting from the route withdrawal message.
Abstract:
An information handling system is provided. The information handling system includes a first network switch configurable, the first network switch having a computer processor in communication with a plurality of ports for receiving and sending frames and a memory coupled to the computer processor and including a media access control (MAC) address table. The computer processor is configured to read frames, each frame having a header, and is also configured to associate a MAC address with a parent link aggregation group (LAG) except while a downstream link failure is detected. The computer processor is configured to associate the MAC address with a sub-LAG while a downstream link failure is detected. Methods for directing traffic through a virtual link trunking (VLT) domain during failure of a downstream link are also provided.
Abstract:
Access control systems and methods herein successfully overcome ACL group width limitations of existing designs by splitting an ACL group across different units, e.g., to create two ACL groups that each has a relatively smaller width. In embodiments, availability of ACL space is increased by hierarchically splitting an ACL table to fit into different two coupled devices and modifying certain fields carrying metadata in packets that are exchanged between the devices, such that one chipset may carry information about the lookup of another. In embodiments, an ACL group for a port extender is created by selectively creating a sub-group with qualifiers that fit within an available group width, and moving the remaining qualifiers to a controlling bridge to achieve the desired functionality.
Abstract:
Various embodiments of the invention allow for rapid communication in virtual link trunking (VLT) networks in which network traffic flows over not all-homed VLT peer devices, while honoring Equal Cost Multi Path (ECMP) decisions and normal route decisions about next hops. Traffic flow is made deterministic and free of sub-optimal paths that otherwise cause unnecessary traffic over inter-node links in the VLT domain. In embodiments, this is accomplished by using receiving VLAN interface-IP addresses from VLT devices in order to create and use a sub-LAG egress table from which sets of ports that lead to intended VLT devices are derived. In embodiments, instead of a VLAN interface-IP addresses a routing MAC address is used when forming the sub-LAG.