Abstract:
A switch (110R.3) uses a forwarding database (140F) to forward multicast packets. The switch participates in a multicast protocol (e.g. PIM) with other switches, and also uses a snooping database (e.g. for IGMP snooping) to learn about local group members, i.e. members for which the router serves as a local multicast router (e.g. the local members do not participate in the multicast protocol). When the switch learns of a local member of a multicast group, the switch updates the snooping database but may or may not install the snooping information in the forwarding database. Thus, the forwarding database is not necessarily provisioned for locally sourced data packets addressed to the group until receipt of a locally sourced data packet addressed to the group. If no such packets are received, the forwarding database is not provisioned for such packets, and therefore its size is reduced. Other features are also provided.
Abstract:
Various embodiments of the invention allow for rapid communication in virtual link trunking (VLT) networks in which network traffic flows over not all-homed VLT peer devices, while honoring Equal Cost Multi Path (ECMP) decisions and normal route decisions about next hops. Traffic flow is made deterministic and free of sub-optimal paths that otherwise cause unnecessary traffic over inter-node links in the VLT domain. In embodiments, this is accomplished by using receiving VLAN interface-IP addresses from VLT devices in order to create and use a sub-LAG egress table from which sets of ports that lead to intended VLT devices are derived. In embodiments, instead of a VLAN interface-IP addresses a routing MAC address is used when forming the sub-LAG.
Abstract:
Aspects of the present invention include a port extender environment using the port extenders to dynamically select a data path. In embodiments of the present invention, each port extender can communicate data traffic to another port extender or to a host receiver. The communication path is selected in the port extender using a hashing system.
Abstract:
Each router in a group of routers (110R.2, 110R.3) includes an interface (P4) assigned a common virtual address for multicast (VAM). The common VAM is advertised in router advertisings for multicast traffic; other addresses are advertised for unicast. The member routers in the group share multicast forwarding databases. Increased throughput is therefore provided for multicast traffic without traffic replication. Any router in the group can service requests from end-point sources and receivers of multicast traffic, e.g. requests to join or leave a multicast group, or requests presented as multicast packets for forwarding to a multicast group.
Abstract:
A system and method for traffic polarization during failures includes a communication network cluster including a first network switching unit configured to communicate with a first network node via a first network link and a second network node via a second network link, a second network switching unit configured to communicate with the first network node via a third network link and the second network node via a fourth network link, and a first intra-cluster link coupling the first network switching unit to the second network switching unit. The second network switching unit is further configured to respond to a failure in the fourth network link by broadcasting a route withdrawal message to the first network switching unit and the first network node. The first network switching unit is configured to accept rerouted network traffic from the first network node via the first network link resulting from the route withdrawal message.
Abstract:
A switch (110R.3) uses a forwarding database (140F) to forward multicast packets. The switch participates in a multicast protocol (e.g. PIM) with other switches, and also uses a snooping database (e.g. for IGMP snooping) to learn about local group members, i.e. members for which the router serves as a local multicast router (e.g. the local members do not participate in the multicast protocol). When the switch learns of a local member of a multicast group, the switch updates the snooping database but may or may not install the snooping information in the forwarding database. Thus, the forwarding database is not necessarily provisioned for locally sourced data packets addressed to the group until receipt of a locally sourced data packet addressed to the group. If no such packets are received, the forwarding database is not provisioned for such packets, and therefore its size is reduced. Other features are also provided.
Abstract:
An information handling system is provided. The information handling system includes a first network switch configurable, the first network switch having a computer processor in communication with a plurality of ports for receiving and sending frames and a memory coupled to the computer processor and including a media access control (MAC) address table. The computer processor is configured to read frames, each frame having a header, and is also configured to associate a MAC address with a parent link aggregation group (LAG) except while a downstream link failure is detected. The computer processor is configured to associate the MAC address with a sub-LAG while a downstream link failure is detected. Methods for directing traffic through a virtual link trunking (VLT) domain during failure of a downstream link are also provided.
Abstract:
A set of remote Virtual Extensible LAN (VxLAN) tunnel endpoints (VTEPs) and an ingress VTEP associated different Ethernet Segments (ESs) elect amongst themselves designated forwarder (DF) for forwarding broadcast, unknown-unicast, and multicast traffic (BUM) traffic by triggering an RFC 7432 election mechanism on each of the VTEPs. In embodiments, DF election involves exchanging configuration information, such as Type-4 routes for ESs via Border Gateway Protocol (BGP), without being confined to a particular ES that is local to all VTEPs, i.e., irrespective of local ES and internet identifiers. This allows performing targeted forwarding of BUM traffic to intended VTEPs which avoiding unnecessary ingress replication of BUM traffic in the ingress VTEP, thereby, saving hardware buffer resources and avoiding unnecessary flooding of frames to a set of non-forwarding egress VTEPs, ultimately, reducing the load on the egress VTEP and freeing up packet processing resources.
Abstract:
A VXLAN multi-tenant inter-networking device packet forwarding system includes a first aggregated networking device coupled to a first host device and a second aggregated networking device that is coupled to second host devices. The first aggregated networking device receives a data packet from the first host device and, in response, identifies a virtual network associated with the first host device. Based on a first and second portion of a virtual network identifier that identifies the virtual network, the first aggregated networking device generates respective first and second packet forwarding identifiers. The first aggregated networking device then provides the first and second packet forwarding identifiers in the data packet, and forwards the data packet to the second aggregated networking device. The second aggregated networking device may then forward the data packet to one of the second host devices based on the first and second packet forwarding identifiers in the data packet.
Abstract:
A method of routing traffic for multi-cast routing through a node of a network that utilizes loop-free alternative paths is presented. The method includes receiving a join in the node from a second node in the network on a shortest path between the node and the second node; retrieving loop-free alternative paths to the second node; and adding an entry to a multi-cast routing table at the node that is based on a group that includes the shortest path to the second node and the loop-free alternative paths to the second node as cost equivalent paths.