Abstract:
A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
Abstract:
A signal which varies over time is monitored to determine an alarm condition, where the sample stream of digital values from an A/D converter is divided in to equal length pieces and a Fourier Transform (FT) algorithm is used to transform each piece of the stream into a three dimensional dataset including frequency domain amplitude, frequency and time. A Frequency Envelope is calculated by taking the maxima over the time dimension for a period of time, leaving a two dimensional frequency domain amplitude vs frequency dataset which is compared with new data arriving to determine the alarm condition for each element of the Frequency Envelope either by applying a constant delta additively or multiplicatively or by using a “leaky bucket” algorithm.
Abstract:
A defect in a roof membrane is detected by applying a DC voltage between the roof deck and a perimeter conductor and using a detection probe pair to provide a signal indicative of the differences in voltage detected by the pair of probes so as to allow the operator to locate the defect by moving the probes to different locations. The probes are mounted on a rigid common frame such that the probe pair has a fixed separation and the frame includes a handle portion which allows ready manipulation of the frame carrying the probes by the operator. The receiver provides an audible signal emitter to the operator and includes a calibration circuit arranged to automatically maintain, despite changes in voltage applied between the roof deck and the peripheral conductor, a “0” set calibration point so as to indicate at the calibration point when zero difference in voltage is detected.
Abstract:
A moisture detection sensor is used in a building structure to detect moisture penetration. The sensor is a flat adhesive tape of a substrate of dielectric, hydrophobic material. Three or four elongate, parallel, conductors are secured to the top surface and a protective layer of non-hygroscopic, water pervious material is secured over two of the conductors so that they are exposed to surface moisture. One or two of the conductors are covered by an insulating layer to prevent moisture access. Pairs of moisture probes along the length of the tape penetrate the insulating layer, the respective conductors and the substrate and to extend into a building component to which the substrate has been adhered. A diode guide arrangement allows a monitoring unit to monitor the exposed conductors for surface moisture and the penetrated conductors for moisture in the component by reversing polarity of the voltage across the conductors.
Abstract:
A novel method and apparatus are used for monitoring cables for wear and damage. The system is particularly applicable to a cable system with multiple branch terminations. The cables have detection conductors, for example the metal cable jackets or other detection conductors extending the length of the conductors. These are connected electrically at the splice points in the system. At the end of each branch and at the end of the main cable, the detection conductors are each connected to a novel termination circuit. In the normal monitoring mode, the termination circuit appears as an open circuit. A DC voltage is normally applied to the detection conductors. Any current is a result of current leakage at a resistive fault along the detection conductors. The termination circuits are activated by altering the DC voltage, e.g. by reversing the polarity and increasing the magnitude of the voltage. This causes the termination circuit to perform a series of functional tests. These include a loop test which places a short across the end of the detection conductor for a timed period. The resulting high level loop current is used to calculate the total detection conductor resistance. A second test transmits a coded signal simulating a triggered splice sensor unit. The signal is detected and decoded to verify proper operation of end to end coded signaling after completing a test cycle, the termination circuit turns off and the next termination to be tested is addressed.
Abstract:
A resistive fault in an electrical cable is located by applying a DC voltage to one end of the faulted cable conductor. The steady state DC voltage and current are measured at the end of the conductor where the voltage is applied. Simultaneously, the DC voltage is measured at the other end of the cable. The voltage is then reversed in polarity and the measurements repeated. Several repetitions of this procedure at each end of the conductor yields sufficient information to compute the location of the fault with reasonable accuracy. The procedure is carried out using two computer-based units, one at each end of the cable, with the two units communicating over the conductor under test.
Abstract:
A cable having a composite shield and armour sheath design is disclosed. The cable comprises a cable core, a sheath of corrugated laminated tape surrounding the cable core and formed by bonding a plastic coated aluminum tape to a wider steel tape with one edge of the aluminum tape registering with one edge of the steel tape, and an outer jacket of polyethylene overlying the sheath of corrugated laminated tape. The uncovered portion of the steel tape overlaps the registering edges of the laminated tape, to form a uniform unwelded overlap.
Abstract:
Some or all of the optical fibers of a single-mode or multi-mode cable are monitored for intrusion by transmitting through the fibers a signal which can be analyzed for changes in its characteristics which are indicative of movement as a prelude to an intrusion event. To avoid independent monitors of all of the fibers, in some cases the same light signal is looped through a plurality of the fibers in series by passive jumpers. Switches can be used to disconnect out those fibers which are compromised. As an alternative a plurality of separate monitoring signals can be provided each associated with its own sensor where unique combinations of the signals are transmitted through separate fibers allowing a higher number of fibers to be monitored than the number of signals.
Abstract:
A moisture detection sensor is used in a building structure to detect moisture penetration. The sensor is a flat adhesive tape of a substrate of dielectric, hydrophobic material. Three or four elongate, parallel, conductors are secured to the top surface and a protective layer of non-hygroscopic, water pervious material is secured over two of the conductors so that they are exposed to surface moisture. One or two of the conductors are covered by an insulating layer to prevent moisture access. Pairs of moisture probes along the length of the tape penetrate the insulating layer, the respective conductors and the substrate and to extend into a building component to which the substrate has been adhered. A diode guide arrangement allows a monitoring unit to monitor the exposed conductors for surface moisture and the penetrated conductors for moisture in the component by reversing polarity of the voltage across the conductors.
Abstract:
A defect in a horizontal or vertical seam at the edge of a roof membrane is detected by applying a DC voltage between the roof deck a probe in the form of a flexible wetted sponge and wiping the sponge probe over the seams. The current to the probe is detected and indicated to the operator so that the operator may determine a maximum current at the defect. The receiver provides an audible signal emitter to the operator and includes a calibration circuit arranged to automatically maintain, despite changes in voltage applied between the roof deck and the peripheral conductor, a “0” set calibration point so as to indicate at the calibration point when zero difference in voltage is detected. Conductors can be applied to the membrane to define an area to be tested within the conductors.