Abstract:
This scroll compressor (2) includes a first fixed scroll (4), an orbiting scroll arrangement (7), a drive shaft (18) adapted for driving the orbiting scroll arrangement (7) in an orbital movement, a driving unit coupled to the drive shaft (18) and arranged for driving in rotation the drive shaft (18) about a rotation axis, and guide elements for guiding in rotation the drive shaft (18), the guide elements comprising at least a first guide bearing (29) and a second guide bearing (30) arranged to respectively guide a first portion (26) and a second portion (27) of the drive shaft (18). The drive shaft (18) extends across the orbiting scroll arrangement (7) such that the first and second portions (26, 27) of the drive shaft (18) are located on either side of the orbiting scroll arrangement (7), the first and second guide bearings (29, 30) being located on either side of the orbiting scroll arrangement (7).
Abstract:
This scroll compressor includes a first fixed scroll member, an orbiting scroll arrangement including a first orbiting scroll member, a first Oldham coupling provided between the first orbiting scroll member and the first fixed scroll member and configured to prevent rotation of the first orbiting scroll member with respect to the first fixed scroll member, a fixed element opposite to the first fixed scroll member with respect to the orbiting scroll arrangement, and a second Oldham coupling provided between the orbiting scroll arrangement and the fixed element and configured to prevent rotation of the orbiting scroll arrangement with respect to the fixed element. The first Oldham coupling is slidable with respect to the first fixed scroll member along a first displacement direction, and the second Oldham coupling is slidable with respect to the fixed element along a second displacement direction transverse to the first displacement direction.
Abstract:
This scroll compressor includes a scroll compression unit including a first fixed scroll including a first fixed base plate and a first fixed spiral wrap, an orbiting scroll arrangement (7) including a first orbiting spiral wrap (14), the first fixed spiral wrap and the first orbiting spiral wrap (14) forming a plurality of first compression chambers. The scroll compressor further includes a refrigerant suction part suitable for supplying the scroll compression unit with refrigerant to be compressed. The orbiting scroll arrangement (7) further includes a first orbiting guiding portion (21) extending from an outer end portion of the first orbiting spiral wrap (14) and configured to guide, in use, at least a part of the refrigerant supplied to the scroll compression unit towards the first compression chambers.
Abstract:
A scroll compressor including a compression unit includes a first non-orbiting scroll having a receiving cavity and an orbiting scroll arrangement. The compression unit further includes a refrigerant suction part suitable for supplying the compression unit with a refrigerant flow, and a first anti-rotation device located in the receiving cavity and configured to prevent rotation of the orbiting scroll arrangement with respect to the first fixed non-orbiting scroll. The compression unit further includes an oil discharge device including an oil discharge passage, the oil discharge passage includes an oil inlet fluidly connected to the receiving cavity and at least one oil discharge outlet located in a refrigerant flow path and configured to supply the refrigerant flow with oil from the receiving cavity.
Abstract:
This scroll compressor (2) includes a first and second fixed scrolls (4, 5) comprising first and second fixed spiral wraps (9, 12), an orbiting scroll arrangement (7) comprising first and second orbiting spiral wraps (14, 15), the first fixed spiral wrap (9) and the first orbiting spiral wrap (14) forming a plurality of first compression chambers (16) and the second fixed spiral wrap (5) and the second orbiting spiral wrap (15) forming a plurality of second compression chambers (17). The scroll compressor further includes a drive shaft (23) adapted for driving the orbiting scroll arrangement (7) in an orbital movement, and a driving motor (24) arranged for driving in rotation the drive shaft (23) about a rotation axis, the driving motor (24) being located nearby the first fixed scroll (4). The first fixed scroll (4) includes at least one first discharge passage (21) arranged to conduct the refrigerant compressed in the first compression chambers (16) towards the driving motor (24).
Abstract:
This scroll compressor (2) includes a first fixed scroll (4), an orbiting scroll arrangement (7), a drive shaft (18) adapted for driving the orbiting scroll arrangement (7) in an orbital movement, a driving unit coupled to the drive shaft (18) and arranged for driving in rotation the drive shaft (18) about a rotation axis, and guide elements for guiding in rotation the drive shaft (18), the guide elements comprising at least a first guide bearing (29) and a second guide bearing (30) arranged to respectively guide a first portion (26) and a second portion (27) of the drive shaft (18). The drive shaft (18) extends across the orbiting scroll arrangement (7) such that the first and second portions (26, 27) of the drive shaft (18) are located on either side of the orbiting scroll arrangement (7), the first and second guide bearings (29, 30) being located on either side of the orbiting scroll arrangement (7).
Abstract:
This scroll compressor includes first and second fixed scroll members, first and second orbiting scroll members, a first Oldham coupling provided between the first orbiting scroll member and the first fixed scroll member and configured to prevent rotation of the first orbiting scroll member with respect to the first fixed scroll member, and a second Oldham coupling provided between the second orbiting scroll member and the second fixed scroll member and configured to prevent rotation of the second orbiting scroll member with respect to the second fixed scroll member. The first Oldham coupling is slidably mounted with respect to the first fixed scroll member along a first displacement direction, and the second Oldham coupling is slidably mounted with respect to the second fixed scroll member along a second displacement direction parallel with respect to first displacement direction. First and second orbiting scroll members are configured to operate in phase opposition.
Abstract:
The oil injection device according to the invention includes an oil pump designed to be rotationally coupled to the electric motor of a compressor and including inlet and outlet ports, an oil injection duct connected to the first outlet port and designed to supply a compression stage of the compressor with oil, and an oil return duct connected to the first outlet port and designed to return the oil into an oil sump of the compressor. The pressure losses in the oil injection duct are primarily singular pressure losses proportional to the square of the oil flow rate passing through the oil injection duct. The pressure losses in the oil return duct are primarily pressure losses due to friction proportional to the oil flow rate passing through the oil return duct.
Abstract:
A scroll compressor including a compression unit includes a first non-orbiting scroll having a receiving cavity and an orbiting scroll arrangement. The compression unit further includes a refrigerant suction part suitable for supplying the compression unit with a refrigerant flow, and a first anti-rotation device located in the receiving cavity and configured to prevent rotation of the orbiting scroll arrangement with respect to the first fixed non-orbiting scroll. The compression unit further includes an oil discharge device including an oil discharge passage, the oil discharge passage includes an oil inlet fluidly connected to the receiving cavity and at least one oil discharge outlet located in a refrigerant flow path and configured to supply the refrigerant flow with oil from the receiving cavity.
Abstract:
The scroll compressor (1) includes an orbiting scroll arrangement (7), and a drive shaft (18) configured to drive the orbiting scroll arrangement (7) in an orbital movement, the drive shaft (18) including a lubrication channel (32) and a first lubrication hole (35) fluidly connected to the lubrication channel (32) and emerging in an outer wall of the drive shaft (18). The scroll compressor (1) further includes a first and a second bearings (38, 39) axially offset along a rotation axis of the drive shaft (18) and each configured to engage the drive shaft (18). The first and second bearings (38, 39) and the drive shaft (18) partially define a first annular gap (44) in which emerges the first lubrication hole (35). The first bearing (38) and the drive shaft (18) define a first oil recess fluidly connected to the first annular gap (44), and the second bearing (39) and the drive shaft (18) define a second oil recess fluidly connected to the first annular gap (44).