Abstract:
The invention relates to novel mold growth inhibiting products for various foodstuffs, and a method of making and using the same. The mold growth inhibiting product is generally a mixture of various compounds, including: a first compound selected from the group consisting of azodicarbonamide or potassium bromate, a second compound selected from the group consisting of benzoic acid, sodium benzoate, calcium benzoate, potassium benzoate, paraben, acetic acid, lactic acid, fumaric acid, citric acid, potassium sorbate, sodium sorbate, calcium sorbate, sorbic acid, calcium propionate, potassium propionate, sodium propionate, propionic acid or mixtures thereof. In a second embodiment of the invention, a third compound is added which lowers the decomposition temperature of the azodicarbonamide. In a fifth embodiment of the invention, the mold growth inhibiting product is prepared by placing a layer of azodicarbonamide on a substrate means and then covering said layer with a gas permeable separator means. The second compound is then added on top of the separator and then the combination is heated to form the final product. In a seventh embodiment, the second compound is mixed with a gaseous mixture to yield a mold inhibitor product having little or no off-flavor, off-texture, off-color or off-odor. All embodiments of this invention are added to the foodstuff in the same or greater percentages of current day mold inhibitors, yet the resultant foodstuff has no off-flavor, taste or color which is normally imparted by current day mold inhibitors.
Abstract:
The invention provides processes for treating commercial grade preservatives to remove the off-flavor and/or off-odor from the preservatives. The processes involve preparing a solution by dissolving the preservative in a suitable solvent, such as water or methanol or mixtures thereof. The preservative solution is then passed through a filter to separate and remove organic acid impurities from the preservative. The undesirable tastes and odors, principally caused by the organic acid impurities, are retained in the filter while the preservative passes through the filter. In one embodiment, the filter is a bed of anion exchange resin that reacts with and removes the organic acid impurities. In another embodiment, the filter contains a metal cation that converts the organic acid impurities into insoluble salts which remain in the filter. The solvent can be removed by evaporation after the preservative solution is passed through the filter.
Abstract:
A method of treating antimicrobial products, dairy products, pharmaceutical products and other products having offensive tastes or odors to remove the off-odors and off-tastes from the products. The method involves exposing a selected commercial grade product that contains a small amount of free acid impurities to an ammonia gas. The ammonia gas reacts with the free acid impurities to convert the free acids into ammonium salts, thereby reducing or eliminating the off-flavor and off-odor of the product. The products to be treated include antimicrobial products selected from the group consisting of sodium benzoate, calcium benzoate, potassium benzoate, sodium diacetate, paraben, niacin, calcium acetate, calcium diacetate, sodium sorbate, calcium sorbate, potassium sorbate, sodium propionate, calcium propionate, potassium propionate and mixtures thereof; dairy products selected from the group consisting of casein, whey, skim milk powder, and calostrum; pharmaceutical products selected from the group consisting of acetaminiphen, aspirin, ibuprophen, dextromethorphan hydrobromide, guaejenesin, paracetamol, and sodium erythorbate; and various other products selected from the group consisting of butylate hydroxy tolulene, polydextrose powder, sodium acid sulfate, and sodium diacetate. The common characteristic of the commercial grades of each of these products is that they contain a small amount of free acid impurities that react favorably with ammonia gas.
Abstract:
Novel antimicrobial products and methods of making and using the same are shown, whereby the products can be used in the same or greater percentages as conventional microbial growth inhibitors without imparting an off-flavor, taste, color or odor to the products in which they are used. The antimicrobial products are formed by reacting azodicarbonamide or an ammonia gas with a compound selected from the group consisting of benzoic acid, sodium benzoate, calcium benzoate, potassium benzoate, acetic acid, sodium diacetate, paraben, niacin, calcium acetate, calcium diacetate, citric acid, lactic acid, fumaric acid, sorbic acid, sodium sorbate, calcium sorbate, potassium sorbate, propionic acid, sodium propionate, calcium propionate, potassium propionate and mixtures thereof. In one embodiment, the product is prepared by placing a layer of azodicarbonamide on a substrate and covering the layer with a gas permeable separator. The antimicrobial compound is then added on top of the separator, and the combination is heated to form the final product. In another embodiment, the product is prepared by exposing the antimicrobial compound to an ammonia gas. The ammonia gas reacts with free acids in the antimicrobial compound to convert the free acids into ammonium salts, thereby eliminating off-flavor and off-odor of the resulting antimicrobial product. The antimicrobial products prepared according to the present invention are suitable for use in foodstuffs, sanitation products, cosmetics, pharmaceuticals, and so forth.