Abstract:
To provide an authentication device and method for a security medium including a reflective volume hologram, capable of easily performing authentication determination and a security medium including the reflective volume hologram.An authenticity determination device 1 for a security medium 10 including a reflective volume hologram 2 includes a light source L disposed on the front surface side of the reflective volume hologram 2 so that light emitted therefrom is incident on the reflective volume hologram 2, a first observation device 11 disposed in a pre-designed diffraction direction of the reflective volume hologram 2, and a second observation device 12 disposed in a direction other than the pre-designed diffraction direction of the reflective volume hologram 2. Light including a pre-designed diffraction wavelength is emitted from the light source L to be incident on the reflective volume hologram 2, and at this time, when the light amount observed in the first observation device 11 is larger in the diffraction wavelength than in other wavelengths, and the light amount observed in the second observation device 12 is smaller in the diffraction wavelength than in other wavelengths, it is determined that the reflective volume hologram 2 is genuine.
Abstract:
A main object of the present invention is to provide a method of producing a volume hologram laminate which can regenerate a hologram image in an arbitrary wavelength by a simple process. To attain the object, the present invention provides a method of producing a volume hologram laminate using a volume hologram forming substrate which comprises: a substrate, a volume hologram layer formed on the substrate and containing a photopolymerizable material, a resin layer, formed on the substrate so as to contact to the volume hologram layer, containing a resin and a polymerizable compound, characterized in that the producing method comprises processes of: a hologram recording process to record a volume hologram to the volume hologram layer, a substance transit process of transiting the polymerizable compound to the volume hologram layer, and an after-treatment process of polymerizing the polymerizable compound.
Abstract:
A main object of the present invention is to provide a method of producing a volume hologram laminate which can regenerate a hologram image in an arbitrary wavelength by a simple process. To attain the object, the present invention provides a method of producing a volume hologram laminate using a volume hologram forming substrate which comprises: a substrate, a volume hologram layer formed on the substrate and containing a photopolymerizable material, a resin layer, formed on the substrate so as to contact to the volume hologram layer, containing a resin and a polymerizable compound, characterized in that the producing method comprises processes of: a hologram recording process to record a volume hologram to the volume hologram layer, a substance transit process of transiting the polymerizable compound to the volume hologram layer, and an after-treatment process of polymerizing the polymerizable compound.
Abstract:
A major object of the present invention is to provide a volume hologram transfer foil that gives a volume hologram laminate higher in antiforgery function.The present invention achieves the object by providing a volume hologram transfer foil comprising: a substrate, a volume hologram layer carrying a recorded volume hologram that is formed on the substrate, and an image forming layer carrying a formed image and a heat seal layer containing a thermoplastic resin that are formed on the volume hologram layer, and comprising no reflective layer having a function to reflect light.
Abstract:
A display article (10) includes a plurality of display areas (12, and 13a to 13c). Display areas adjacent to each other differ in at least one of an average hue, an average brightness and an average chroma and a first object to be displayed (21) is formed by a combination of the plurality of display areas (12, and 13a to 13c). At least one of the display areas (12, 13a to 13c) includes a Fourier transform hologram (20R, 20Y) configured to convert incident ray from a point light source or a laser light source into a second object to be displayed.
Abstract:
The invention relates to a holographic viewing device that enable printing or the like to be directly applied to a transmission hologram substrate without recourse to any frame for supporting and reinforcing a transmission hologram, thereby simplifying construction while enhancing aesthetic and decorative attributes, and a holographic viewing card incorporating it. The holographic viewing device enables a given image or message to be viewed near the positions of point light sources upon viewing the point light sources through a hologram, and comprises a transparent substrate 41, a hologram-formation layer 42 and a printing layer 45. The hologram-formation layer 42 may be any one of a phase type diffractive optical element having a relief structure 43 on its surface, a phase type diffractive optical element having a refractive index profile in its layer, and an amplitude type diffractive optical element having a transmittance profile in its layer.