Abstract:
An information handling system (IHS) includes a lightweight server chassis having a surface that includes a plurality of slots formed within the chassis surface. Each slot is sized to receive a specific compute component of a plurality of different compute components that collectively provide a fully functional IHS. In one embodiment, at least one slot that is formed within the chassis surface is sized to receive a respective one of the more than one type of compute component of a plurality of different compute components. Thereby, an original equipment manufacturer (OEM) can flexibly ship at least portions of the IHS to an end user destination for possible downstream reconfiguration and assembly.
Abstract:
An information handling system (IHS) has a lightweight server (LWS) chassis that is user selectable from multiple LWS chassis. Each LWS chassis includes a chassis base having structural configuration that enables placement of the LWS chassis in a nested, stacked configuration with a second LWS chassis placed atop the LWS chassis and a third LWS chassis placed below the LWS chassis. Multiple LWS chassis can be stacked in a vertical space whose height is less than a sum of individual heights of each of the multiple LWS chassis. The IHS further includes compute components inserted into the LWS chassis and one or more connecting cabling interconnecting the at least two compute components.
Abstract:
A lightweight server (LWS) chassis includes a chassis base having structural configuration that enables placement of the LWS chassis in a nested, stacked configuration with a second LWS chassis placed atop the LWS chassis and a third LWS chassis placed below the LWS chassis. Multiple LWS chasses can be stacked in a vertical space whose height is less than a sum of individual heights of each of the multiple LWS chasses.
Abstract:
An information handling system (IHS) when operational has compute components held by a lightweight server (LWS) chassis. For both shipping and operational support, the LWS chassis is inserted into a casing that is laterally sized to prevent lateral movement of the server chassis. The casing is formed of an impact tolerant material to protect the server chassis and any functional compute components inserted within the server chassis. In addition, the casing has sealable flaps that enable the server chassis to be fully enclosed within the casing. Thereby, the casing can be utilized as an external shipping carton in which the IHS can be physically shipped to a destination.
Abstract:
A method of manufacturing a chassis that cools thermal energy generating components of an information handling system (IHS) includes: forming an enclosure with a chassis that has a base wall for provisioning a thermal energy generating component; forming one or more stiffeners each having one or more air channels formed transversely through for directing air proximate to the base wall; attaching the one or more stiffeners laterally across the base wall; and attaching a planar member that is horizontally on top of the one or more stiffeners for engaging one or more forward compute components on top of the planar member that substantially block air flow above the planar member to the thermal energy generating component. The one or more air channels eliminate thermal shadowing caused by thermal energy generating components provisioned in a rear area of the chassis.
Abstract:
A method for structurally protecting an information handling system (IHS) for both shipment and operation includes: providing a lightweight server (LWS) chassis; providing a casing that is formed of structurally rigid material to protect the server chassis and any functional compute components inserted within the server chassis; inserting the LWS chassis into the casing; and fully enclosing the LWS chassis within the casing using sealable flaps of the casing such that the casing can be utilized as an external shipping carton in which the IHS is physically shipped to a destination.