-
公开(公告)号:US20250062981A1
公开(公告)日:2025-02-20
申请号:US18936874
申请日:2024-11-04
Applicant: Cisco Technology, Inc.
Inventor: Rakesh Gandhi , Clarence Filsfils
IPC: H04L45/12 , H04L12/46 , H04L43/0852 , H04L45/50
Abstract: Techniques for utilizing entropy labels of a Multiprotocol Label Switching (MPLS) label stack for performing monitoring operations (e.g., telemetry, performance measurement, OAM, etc.) without altering the MPLS label stack and/or packet path (e.g., ECMP path). The techniques may include determining, by a node of a network, to perform a monitoring operation associated with traffic that is to be sent along a path through the network. In some examples, the node may receive a packet that is to be sent along the path and encapsulate the packet with an MPLS header. The MPLS header may include an entropy label, entropy label indicator, or other label that is capable of carrying a flag indicating the monitoring operation to be performed. The flag may be carried in a TTL field or traffic class field of the label such that the MPLS label stack is not altered to trigger the monitoring operation.
-
公开(公告)号:US20250055789A1
公开(公告)日:2025-02-13
申请号:US18629355
申请日:2024-04-08
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Syed Kamran Raza , Pablo Camarillo Garvia , Jisu Bhattacharya
IPC: H04L45/302 , H04L45/24 , H04L47/125 , H04L47/2483
Abstract: This disclosure describes techniques and mechanisms for coupling measurement probes with customer data traffic and enabling real-time and selective management of ECMP pathways that are not meeting performance metric(s) in a service provider network. Nodes within the service provider network are configured to perform specific hashing behavior. An ingress node may be configured to create and maintain a TCAM table to store flow label(s) corresponding to ECMP pathways that are not meeting performance metric(s). The system may configure performance measurement session(s) between an ingress node and an egress node. The system may receive performance data, identify pathway(s) violating performance metric(s), and may perform action(s) in real-time.
-
公开(公告)号:US20240430188A1
公开(公告)日:2024-12-26
申请号:US18371848
申请日:2023-09-22
Applicant: Cisco Technology, Inc.
Inventor: Rakesh Gandhi , Clarence Filsfils , Sonia Ben Ayed , Ahmed Mohamed Ahmed Abdelsalam , Pablo Camarillo Garvia
Abstract: Techniques for determine latency, loss, and liveness performance metrics associated with ECMP routes. The techniques may include determining that a TWAMP probe is to be sent from a first node to a second node along an equal-cost multipath ECMP route. In some examples, the first node may generate a packet for sending the TWAMP probe to the second node. The packet may include information specifying a forward path and reverse path to be traversed by the packet. In examples, the first node may send the packet to the second node along the ECMP route and subsequently receive the packet including telemetry data associated with the second node and a midpoint node of the ECMP route. Based at least in part on the telemetry data, the first node may determine a metric indicative of a performance measurement associated with the ECMP route.
-
公开(公告)号:US12160365B2
公开(公告)日:2024-12-03
申请号:US17741241
申请日:2022-05-10
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Zafar Ali , Francois Clad , Bertrand Herbert Guy Duvivier , Mikhail Koldychev , Rakesh Gandhi , Sagar Soni
Abstract: Disclosed are systems, apparatuses, methods, and computer-readable media to implement circuit-style network with co-routed bidirectional network paths. A method includes receiving a request for a circuit policy between a source node and a destination node, the circuit policy defining a co-routed bidirectional policy between the source node and the destination node; requesting a path compute service to identify a path between the source node and the destination node that satisfies the circuit policy through a first network; receiving a path identifying a first set of network nodes that satisfy the circuit policy; configuring each node in the first set of network nodes within the first network with the circuit policy; and establishing a connection using the path that satisfies the circuit policy between the source node and the destination node.
-
公开(公告)号:US12088483B2
公开(公告)日:2024-09-10
申请号:US18207568
申请日:2023-06-08
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Rakesh Gandhi , Pablo Camarillo Garvia , Francois Clad
IPC: H04L43/106 , H04L41/12 , H04L43/0805 , H04L43/0852 , H04L43/12 , H04L45/12 , H04L45/42 , H04L45/741
CPC classification number: H04L43/0805 , H04L41/12 , H04L43/0852 , H04L43/106 , H04L43/12 , H04L45/123 , H04L45/42 , H04L45/741
Abstract: Techniques for optimizing technologies related to network path tracing and network delay measurements are described herein. Some of the techniques may include using an IPv6 header option and/or segment identifier field of a segment list or a TLV of a segment routing header as a telemetry data carrier. The techniques may also include using an SRv6 micro-segment (uSID) instruction to indicate to a node of a network that the node is to perform one or more path tracing actions and encapsulating the packet and forward. Additionally, the techniques may include using short interface identifiers corresponding to node interfaces to trace a packet path through a network. Further, the techniques may include using short timestamps to determine delay measurements associated with sending a packet through a network. In various examples, the techniques described above and herein may be used with each other to optimize network path tracing and delay measurement techniques.
-
公开(公告)号:US20240235946A9
公开(公告)日:2024-07-11
申请号:US18133950
申请日:2023-04-12
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Pablo Camarillo Garvia , Sonia Ben Ayed
IPC: H04L41/122 , H04L41/0895 , H04L41/40 , H04L43/10
CPC classification number: H04L41/122 , H04L41/0895 , H04L41/40 , H04L43/10
Abstract: Techniques for monitoring data transport in a network virtualization function chain (chain). A path tracing packet is generated having a Midpoint Compressed Data (MCD) to collect path tracing information of the chain. The network virtualization function node is configured to record an MCD containing Wide Local Path Tracing Identification (WL PT ID). The WL PT ID includes a first field having a value that indicates that a non-standard path tracing format is to be used and a second field that indicates a particular path tracing format to be used. The path tracing packet is passed through the chain and is received back after passing through the chain. Data collected by the path tracing packet is then analyzed to determine which network virtualization function nodes and chains the path tracing packet passed through and the amount of time taken for the path tracing packet to pass through the chain.
-
公开(公告)号:US20240163179A1
公开(公告)日:2024-05-16
申请号:US18422801
申请日:2024-01-25
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Ahmed Mohamed Ahmed Abdelsalam , Pablo Camarillo Garvia , Sonia Ben Ayed
IPC: H04L41/122 , H04L41/0895 , H04L41/40 , H04L43/10
CPC classification number: H04L41/122 , H04L41/0895 , H04L41/40 , H04L43/10
Abstract: Techniques for monitoring data transport in a network virtualization function (NVF) chain. A path tracing packet is generated having a Midpoint Compressed Data (MCD) to collect path tracing information of the NVF chain. The NVF node is configured to record an MCD containing Wide Local Path Tracing Identification (WL PT ID). The WL PT ID includes a first field having a value that indicates that a non-standard path tracing format is to be used and has a second field that indicates a particular path tracing format to be used. The path tracing packet is passed through the NVF chain and is then received back again after passing through the NVF chain. Data collected by the path tracing packet is analyzed to determine which NVF nodes the path tracing packet passed through, and the amount of time taken for the path tracing packet to pass through, the NVF chain.
-
公开(公告)号:US20240098161A1
公开(公告)日:2024-03-21
申请号:US18360783
申请日:2023-07-27
Applicant: Cisco Technology, Inc.
Inventor: Patrice Brissette , Clarence Filsfils , Darren Dukes , Gaurav Dawra , Francois Clad , Pablo Camarillo Garvia
IPC: H04L69/22 , H04L12/46 , H04L45/00 , H04L45/02 , H04L45/50 , H04L45/74 , H04L45/741 , H04L49/35 , H04L61/5007 , H04L67/10 , H04L67/63 , H04L69/324
CPC classification number: H04L69/22 , H04L12/4633 , H04L12/4641 , H04L45/04 , H04L45/14 , H04L45/34 , H04L45/50 , H04L45/74 , H04L45/741 , H04L49/35 , H04L61/5007 , H04L67/10 , H04L67/63 , H04L69/324 , H04L61/2503
Abstract: In one embodiment, Ethernet Virtual Private Network (EVPN) is implemented using Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) underlay network and SRv6-enhanced Border Gateway Protocol (BGP) signaling. A particular route associated with a particular Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) Segment Identifier (SID) is advertised in a particular route advertisement message of a routing protocol (e.g., BGP). The SID includes encoding representing a particular Ethernet Virtual Private Network (EVPN) Layer 2 (L2) flooding Segment Routing end function of the particular router and a particular Ethernet Segment Identifier (ESI), with the particular SID including a routable prefix to the particular router. The particular router receives a particular packet including the particular SID; and in response, the particular router performs the particular EVPN end function on the particular packet.
-
公开(公告)号:US11924090B2
公开(公告)日:2024-03-05
申请号:US18147158
申请日:2022-12-28
Applicant: Cisco Technology, Inc.
Inventor: Clarence Filsfils , Zafar Ali , Syed Kamran Raza , Ahmed Bashandy , Nagendra Kumar Nainar , Carlos M. Pignataro , Jaganbabu Rajamanickam , Rakesh Gandhi , Bhupendra Yadav , Faisal Iqbal
IPC: H04L45/00 , H04L41/0246 , H04L43/106 , H04L45/02 , H04L45/302 , H04L45/741 , H04L101/659
CPC classification number: H04L45/34 , H04L41/0246 , H04L43/106 , H04L45/02 , H04L45/20 , H04L45/304 , H04L45/741 , H04L2101/659
Abstract: In one embodiment, a service chain data packet is instrumented as it is communicated among network nodes in a network providing service-level and/or networking operations visibility. The service chain data packet includes a particular header identifying a service group defining one or more service functions, and is a data packet and not a probe packet. A network node adds networking and/or service-layer operations data to the particular service chain data packet, such as, but not limited to, in the particular header. Such networking operations data includes a performance metric or attribute related to the transport of the particular service chain packet in the network. Such service-layer operations data includes a performance metric or attribute related to the service-level processing of the particular service chain data packet in the network.
-
公开(公告)号:US11799757B2
公开(公告)日:2023-10-24
申请号:US17565823
申请日:2021-12-30
Applicant: Cisco Technology, Inc.
Inventor: Rakesh Gandhi , Clarence Filsfils
IPC: H04L45/12 , H04L43/0852 , H04L45/50 , H04L12/46
CPC classification number: H04L45/123 , H04L43/0852 , H04L45/50 , H04L12/4633
Abstract: Techniques for utilizing entropy labels of a Multiprotocol Label Switching (MPLS) label stack for performing monitoring operations (e.g., telemetry, performance measurement, OAM, etc.) without altering the MPLS label stack and/or packet path (e.g., ECMP path). The techniques may include determining, by a node of a network, to perform a monitoring operation associated with traffic that is to be sent along a path through the network. In some examples, the node may receive a packet that is to be sent along the path and encapsulate the packet with an MPLS header. The MPLS header may include an entropy label, entropy label indicator, or other label that is capable of carrying a flag indicating the monitoring operation to be performed. The flag may be carried in a TTL field or traffic class field of the label such that the MPLS label stack is not altered to trigger the monitoring operation.
-
-
-
-
-
-
-
-
-