Abstract:
In an optical communication network that includes a plurality of interconnected network nodes, a method includes storing in each network node, and for each communication channel that traverses the node, one or more impairment margins of respective impairments that affect the communication channel. A potential communication channel that traverses a subset of the nodes in the network is identified. A quality of the potential communication channel is evaluated by processing the impairment margins stored in the nodes in the subset.
Abstract:
An optical fiber carries optical channels injected into the optical fiber to a Raman amplifier. A controller determines a static tilt associated with the channels in the fiber due to wavelength dependent losses. A photodiode measures a total power of the channels at an output of the Raman amplifier. The controller determines a dynamic tilt associated with channels in the fiber based in part on the measured total power. The dynamic tilt is induced by Stimulated Raman Scattering (SRS) in the fiber and varies as a function of a total power of the signals injected into the fiber. The controller determines a total tilt with which to offset the static and dynamic tilts. The controller sets an amplifier gain tilt applied to the channels equal to the total tilt.
Abstract:
An optical fiber carries optical channels injected into the optical fiber to a Raman amplifier. A controller determines a static tilt associated with the channels in the fiber due to wavelength dependent losses. A photodiode measures a total power of the channels at an output of the Raman amplifier. The controller determines a dynamic tilt associated with channels in the fiber based in part on the measured total power. The dynamic tilt is induced by Stimulated Raman Scattering (SRS) in the fiber and varies as a function of a total power of the signals injected into the fiber. The controller determines a total tilt with which to offset the static and dynamic tilts. The controller sets an amplifier gain tilt applied to the channels equal to the total tilt.
Abstract:
Techniques are presented for automatic tuning of operating parameters, e.g., amplifier gain, in an optical network. A section of an optical network comprises a plurality of spans between optical nodes, and each optical node has an amplifier to amplify optical signals for transmission between optical nodes. Physical network layer data is obtained from the optical nodes for use as input to an analytical model. A set of powers defining an optimum working point of the amplifiers is computed based on variations in amplifier noise figure which depend on amplifier gain. A figure of merit representative of network section performance is computed based on linear and non-linear noise at current power levels of the amplifiers. The figure of merit is evaluated. The set of powers is applied to the amplifiers in the network section when evaluation of the figure of merit indicates that network performance improvement can be achieved.
Abstract:
In an optical communication network that includes a plurality of interconnected network nodes, a method includes storing in each network node, and for each communication channel that traverses the node, one or more impairment margins of respective impairments that affect the communication channel. A potential communication channel that traverses a subset of the nodes in the network is identified. A quality of the potential communication channel is evaluated by processing the impairment margins stored in the nodes in the subset.
Abstract:
Techniques are presented for automatic tuning of operating parameters, e.g., amplifier gain, in an optical network. A section of an optical network comprises a plurality of spans between optical nodes, and each optical node has an amplifier to amplify optical signals for transmission between optical nodes. Physical network layer data is obtained from the optical nodes for use as input to an analytical model. A set of powers defining an optimum working point of the amplifiers is computed based on variations in amplifier noise figure which depend on amplifier gain. A figure of merit representative of network section performance is computed based on linear and non-linear noise at current power levels of the amplifiers. The figure of merit is evaluated. The set of powers is applied to the amplifiers in the network section when evaluation of the figure of merit indicates that network performance improvement can be achieved.