Abstract:
An administrator can define or modify one or more service graphs. Next, the administrator can register service appliances along with their device package files with a controller. Then, the controller can establish the capabilities of the service devices, and classify the service devices as legacy or service tag switching (STS) capable devices. Then, the controller can create one or more instances of the service graph, by populating the service nodes into the service graph. Then, the application owner can attach their endpoint groups (EPGs) to the service graphs created by the administrator. Then, a service in the network can be automatically provisioned using the service graph to configure one or more nodes in an associated service chain of the service according to information in the service graph.
Abstract:
Systems, methods, and computer-readable storage media for executing a copy service. A copy service engine can monitoring network data flow in a network, detect packet data containing a contract defining copy parameters for the execution of a copy service, and determine, based on the contract, when the particular data flow hits a particular network node specified in the contract parameters. When the data flow hits the specified node, the copy service engine can execute the copy service which copies the particular data flow, determines one or more endpoints for sending the copied data flow, and deploys the copies to the one or more endpoints.
Abstract:
An administrator can define or modify one or more service graphs. Next, the administrator can register service appliances along with their device package files with a controller. Then, the controller can establish the capabilities of the service devices, and classify the service devices as legacy or service tag switching (STS) capable devices. Then, the controller can create one or more instances of the service graph, by populating the service nodes into the service graph. Then, the application owner can attach their endpoint groups (EPGs) to the service graphs created by the administrator. Then, a service in the network can be automatically provisioned using the service graph to configure one or more nodes in an associated service chain of the service according to information in the service graph.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for guaranteeing symmetric bi-directional policy based redirect of traffic flows. A first switch connected to a first endpoint can receive a first data packet transmitted by the first endpoint to a second endpoint connected to a second switch. The first switch can enforce an ingress data policy to the first data packet by applying a hashing algorithm to a Source Internet Protocol (SIP) value and a Destination Internet Protocol (DIP) value of the first data packet, resulting in a hash value of the first data packet. The first switch can then route the first data packet to a first service node based on the hash value of the first data packet.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for guaranteeing symmetric bi-directional policy based redirect of traffic flows. A first switch connected to a first endpoint can receive a first data packet transmitted by the first endpoint to a second endpoint connected to a second switch. The first switch can enforce an ingress data policy to the first data packet by applying a hashing algorithm to a Source Internet Protocol (SIP) value and a Destination Internet Protocol (DIP) value of the first data packet, resulting in a hash value of the first data packet. The first switch can then route the first data packet to a first service node based on the hash value of the first data packet.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for guaranteeing symmetric bi-directional policy based redirect of traffic flows. A first switch connected to a first endpoint can receive a first data packet transmitted by the first endpoint to a second endpoint connected to a second switch. The first switch can enforce an ingress data policy to the first data packet by applying a hashing algorithm to a Source Internet Protocol (SIP) value and a Destination Internet Protocol (DIP) value of the first data packet, resulting in a hash value of the first data packet. The first switch can then route the first data packet to a first service node based on the hash value of the first data packet.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for guaranteeing symmetric bi-directional policy based redirect of traffic flows. A first switch connected to a first endpoint can receive a first data packet transmitted by the first endpoint to a second endpoint connected to a second switch. The first switch can enforce an ingress data policy to the first data packet by applying a hashing algorithm to a Source Internet Protocol (SIP) value and a Destination Internet Protocol (DIP) value of the first data packet, resulting in a hash value of the first data packet. The first switch can then route the first data packet to a first service node based on the hash value of the first data packet.
Abstract:
Disclosed are systems, methods, and computer-readable storage media for guaranteeing symmetric bi-directional policy based redirect of traffic flows. A first switch connected to a first endpoint can receive a first data packet transmitted by the first endpoint to a second endpoint connected to a second switch. The first switch can enforce an ingress data policy to the first data packet by applying a hashing algorithm to a Source Internet Protocol (SIP) value and a Destination Internet Protocol (DIP) value of the first data packet, resulting in a hash value of the first data packet. The first switch can then route the first data packet to a first service node based on the hash value of the first data packet.
Abstract:
Systems, methods, and computer-readable storage media for executing a copy service. A copy service engine can monitoring network data flow in a network, detect packet data containing a contract defining copy parameters for the execution of a copy service, and determine, based on the contract, when the particular data flow hits a particular network node specified in the contract parameters. When the data flow hits the specified node, the copy service engine can execute the copy service which copies the particular data flow, determines one or more endpoints for sending the copied data flow, and deploys the copies to the one or more endpoints.
Abstract:
An administrator can define or modify one or more service graphs. Next, the administrator can register service appliances along with their device package files with a controller. Then, the controller can establish the capabilities of the service devices, and classify the service devices as legacy or service tag switching (STS) capable devices. Then, the controller can create one or more instances of the service graph, by populating the service nodes into the service graph. Then, the application owner can attach their endpoint groups (EPGs) to the service graphs created by the administrator. Then, a service in the network can be automatically provisioned using the service graph to configure one or more nodes in an associated service chain of the service according to information in the service graph.