Abstract:
Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.
Abstract:
Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.
Abstract:
Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.
Abstract:
A method for communicating optically between nodes of an optical network, including forming, between a first node and a second node of the network, a set of lightpaths, each of the set of lightpaths having a respective configuration, and transferring communication traffic between the first and second nodes via the set of lightpaths. The method also includes forming a determination for the set of lightpaths that a communication traffic level associated therewith is less than a predetermined threshold, and in response to the determination, removing a lightpath having a given configuration from the set of lightpaths to form a reduced set of lightpaths. The method further includes transferring the communication traffic between the first and second nodes via the reduced set of lightpaths, while reducing a level of power consumption in the removed lightpath and while maintaining the given configuration of the removed lightpath.
Abstract:
Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.