Abstract:
In an embodiment, a method comprises determining a set of protected components that are associated with a notifying node; determining a single network repair address for the set of protected components, wherein the single network repair address is for use in response to unavailability of any of the protected components when transmitting network traffic to the notifying node; assigning the single network repair address to each of the protected components; wherein the notifying node is an internetworking device and wherein the method is performed by one or more processors.
Abstract:
In one embodiment, a maintenance intermediate point (MIP) receives a packet traveling along a multi-protocol label switching (MPLS) label switched path (LSP) that extends from a first maintenance end point (MEP) to a second MEP. The receiving MIP decrements a time-to-live (TTL) value in a header of the packet. In response the TTL value in the header of the packet equaling a particular value, the receiving MIP examines an associated channel header (ACH) field in an operations, administration, and maintenance (OAM) message stored in a payload of the packet, and determines a particular OAM function to perform based on a code in the ACH field. The receiving MIP performs the particular OAM function.
Abstract:
Various techniques can be used to avoid loops during network convergence after a topology change such as a failure. For example, a method can involve detecting a failure that disrupts an existing forwarding path between a node and a destination node; calculating at least one updated forwarding path from the node to the destination node; identifying a maximum time for at least a portion of the network to reach a post-convergence state with respect to the failure; until the maximum time has elapsed at the node, explicitly specifying at least a portion of the updated forwarding path in packet headers of any packets being sent from the node to the destination node; and after the maximum time has elapsed at the node, non-explicitly specifying the portion of the updated forwarding path in packet headers of any additional packets being sent from the node to the destination node.
Abstract:
Various techniques can be used to avoid loops during network convergence after a topology change such as a failure. For example, a method can involve detecting a failure that disrupts an existing forwarding path between a node and a destination node; calculating at least one updated forwarding path from the node to the destination node; identifying a maximum time for at least a portion of the network to reach a post-convergence state with respect to the failure; until the maximum time has elapsed at the node, explicitly specifying at least a portion of the updated forwarding path in packet headers of any packets being sent from the node to the destination node; and after the maximum time has elapsed at the node, non-explicitly specifying the portion of the updated forwarding path in packet headers of any additional packets being sent from the node to the destination node.
Abstract:
In one embodiment, a maintenance intermediate point (MIP) receives a packet traveling along a multi-protocol label switching (MPLS) label switched path (LSP) that extends from a first maintenance end point (MEP) to a second MEP. The receiving MIP decrements a time-to-live (TTL) value in a header of the packet. In response the TTL value in the header of the packet equaling a particular value, the receiving MIP examines an associated channel header (ACH) field in an operations, administration, and maintenance (OAM) message stored in a payload of the packet, and determines a particular OAM function to perform based on a code in the ACH field. The receiving MIP performs the particular OAM function.