Abstract:
In one embodiment, a method includes obtaining a first signal from a first microphone, and determining when the first signal is indicative of activity on a first surface. The method also includes controlling a camera to focus on the first surface when it is determined that the first signal indicates the activity on the first surface. In such an embodiment, the first microphone and the camera may be part of a collaboration system, and the first surface may be a surface of a whiteboard.
Abstract:
A controller for the conference session generates a speaker signal for speakers in a conference room. The controller correlates the speaker signal with network timing information and generates speaker timing information. The controller transmits the correlated speaker signal and timing information to a mobile device participating in the conference session. The mobile device generates an echo cancelled microphone signal from a microphone of the mobile device, and transmits the echo cancelled signal back to the controller. The controller also receives array microphone signals associated with an array of microphones at known positions in the room. The controller estimates a relative location of the mobile device within the conference room. The controller dynamically selects as audio output corresponding to the mobile device location either the echo cancelled microphone signal from the mobile device or an echo cancelled array microphone signal associated with the relative location of the mobile device.
Abstract:
A controller for the conference session generates a speaker signal for speakers in a conference room. The controller correlates the speaker signal with network timing information and generates speaker timing information. The controller transmits the correlated speaker signal and timing information to a mobile device participating in the conference session. The mobile device generates an echo cancelled microphone signal from a microphone of the mobile device, and transmits the echo cancelled signal back to the controller. The controller also receives array microphone signals associated with an array of microphones at known positions in the room. The controller estimates a relative location of the mobile device within the conference room. The controller dynamically selects as audio output corresponding to the mobile device location either the echo cancelled microphone signal from the mobile device or an echo cancelled array microphone signal associated with the relative location of the mobile device.
Abstract:
A controller for the conference session receives at least one audio signal to generate a speaker signal. The controller correlates the speaker signal with network timing information and generates speaker timing information. The controller transmits the correlated speaker signal and timing information to a mobile device participating in the conference session. The mobile device generates an echo cancelled microphone signal from a microphone of the mobile device, and transmits the echo cancelled signal back to the controller. The controller also receives array microphone signals associated with an array of microphones at known positions in the room. The controller removes acoustic echo from the array microphone signals, and estimates a relative location of the mobile device. The controller dynamically selects as audio output corresponding to the mobile device location either (a) the array microphone signal, or (b) the echo cancelled microphone signal from the mobile device.
Abstract:
In one embodiment, a method includes obtaining a first signal from a first microphone, and determining when the first signal is indicative of activity on a first surface. The method also includes controlling a camera to focus on the first surface when it is determined that the first signal indicates the activity on the first surface. In such an embodiment, the first microphone and the camera may be part of a collaboration system, and the first surface may be a surface of a whiteboard.
Abstract:
A device including an array of bidirectional microphones optimizes the echo rejection of the bidirectional microphones. The microphone array receives audio from an audio source and generates audio signals from each of the bidirectional microphones. The device forms audio beams from combinations of the audio signals generated from the microphone array. Each audio beam captures audio from either its positive polarity zone or its negative polarity zone. The device determines a direction of the audio source and selects a perpendicular audio beam pair based on the direction of the audio source. The perpendicular audio beam pair includes a primary audio beam aimed toward the direction of the audio source and a secondary beam perpendicular to the primary audio beam. The device generates an output signal by combining the primary audio beam with the secondary audio beam based on polarity zone the audio is captured for each audio beam.
Abstract:
A processing system can include tracking microphone array(s), audio-tracking circuitry configured to detect a location of audio sources from audio signals from the array(s), and processing circuitry. The processing circuitry can be configured to: identify a first microphone that has a strongest signal strength; estimate a location of an active speaker based on at least an output of the audio-tracking circuitry; determine whether a second microphone for the active speaker is affected by an acoustic obstacle based on the location of the active speaker and a location of the first microphone that has the strongest signal strength; estimate attenuation for microphones based on a comparison of actual signal strengths of the microphones with estimated signal strengths of the microphones that are estimated based on microphone signals of the second microphone for the active speaker; and modify the attenuation based on an estimated location of the acoustic obstacle.
Abstract:
A controller for the conference session receives at least one audio signal to generate a speaker signal. The controller correlates the speaker signal with network timing information and generates speaker timing information. The controller transmits the correlated speaker signal and timing information to a mobile device participating in the conference session. The mobile device generates an echo cancelled microphone signal from a microphone of the mobile device, and transmits the echo cancelled signal back to the controller. The controller also receives array microphone signals associated with an array of microphones at known positions in the room. The controller removes acoustic echo from the array microphone signals, and estimates a relative location of the mobile device. The controller dynamically selects as audio output corresponding to the mobile device location either (a) the array microphone signal, or (b) the echo cancelled microphone signal from the mobile device.
Abstract:
A processing system can include tracking microphone array(s), audio-tracking circuitry configured to detect a location of audio sources from audio signals from the array(s), and processing circuitry. The processing circuitry can be configured to: identify a first microphone that has a strongest signal strength; estimate a location of an active speaker based on at least an output of the audio-tracking circuitry; determine whether a second microphone for the active speaker is affected by an acoustic obstacle based on the location of the active speaker and a location of the first microphone that has the strongest signal strength; estimate attenuation for microphones based on a comparison of actual signal strengths of the microphones with estimated signal strengths of the microphones that are estimated based on microphone signals of the second microphone for the active speaker; and modify the attenuation based on an estimated location of the acoustic obstacle.
Abstract:
Acoustic echo cancellation is improved by receiving a speaker signal that is used to produce audio in a room, and receiving audio signals that capture audio from an array of microphones in the room, including an acoustic echo from the speakers. To cancel the acoustic echo, one adaptive filter is associated with a corresponding subspace in the room. Each of the audio signals is assigned to at least one of the adaptive filters, and a set of coefficients is iteratively determined for each of the adaptive filters. The coefficients for an adaptive filter are determined by selecting each of the audio signals assigned to that adaptive filter and adapting the filter to remove an acoustic echo from each of the selected audio signals. At each iteration, a different audio signal is selected from the audio signals assigned to the adaptive filter in order to determine the set of coefficients.