Abstract:
In one implementation, an input queue switch provides latency fairness across multiple input ports and multiple output ports. In one embodiment, each input port maintains a virtual output queue for each associate output port. The virtual output queues across multiple inputs are aggregated for each specific output port. The sum of the lengths of the virtual output queues is compared to a threshold, and based on the comparison, feedback may be generated to control the operation of the input port for subsequent packets. The feedback may instruct the input port to stop buffering or drop packets destined for the output port with the sum of the lengths of the virtual output queues associated to the specific output port that exceeds the threshold. In another embodiment, each packet has an arrival timestamp, and a virtual output queue having the oldest timestamp is selected first to dequeue.
Abstract:
One embodiment includes multiple distribution nodes sending packets of different ordered sets of packets among multiple packet switching devices arranged in a single stage topology to reach a reordering node. The reordering node receives these packets sent over the different paths and stores them in reordering storage, such as, but not limited to, in queues for each distribution node and packet switching device combination. The reordering node sends packets stored in the reordering storage from the reordering node in original orderings. In response to determining that an aggregation quantum of packets received from the multiple distribution nodes via a particular packet switching device and stored in the reordering storage is outside a range or value, packets being communicated via the particular packet switching device to the reordering node are rate limited.
Abstract:
One embodiment includes multiple distribution nodes sending packets of different ordered sets of packets among multiple packet switching devices arranged in a single stage topology to reach a reordering node. The reordering node receives these packets sent over the different paths and stores them in reordering storage, such as, but not limited to, in queues for each distribution node and packet switching device combination. The reordering node sends packets stored in the reordering storage from the reordering node in original orderings. In response to determining that an aggregation quantum of packets received from the multiple distribution nodes via a particular packet switching device and stored in the reordering storage is outside a range or value, packets being communicated via the particular packet switching device to the reordering node are rate limited.
Abstract:
In one implementation, an input queue switch provides latency fairness across multiple input ports and multiple output ports. In one embodiment, each input port maintains a virtual output queue for each associate output port. The virtual output queues across multiple inputs are aggregated for each specific output port. The sum of the lengths of the virtual output queues is compared to a threshold, and based on the comparison, feedback may be generated to control the operation of the input port for subsequent packets. The feedback may instruct the input port to stop buffering or drop packets destined for the output port with the sum of the lengths of the virtual output queues associated to the specific output port that exceeds the threshold. In another embodiment, each packet has an arrival timestamp, and a virtual output queue having the oldest timestamp is selected first to dequeue.